

CONPROSYS®

(クロスビルド版)

CONPROSYS Linux SDK Ver. 1.5.0

目次

はじめに	4
安全にご使用いただくために	10
開発環境	14
クロスビルド環境設定	24
ターゲットのFirmware書き込み方法.	30
ターゲット動作確認	44
ビルド	60
Appendix	71

1.	概要5
2.	対応するCONPROSYS製品一覧6
3.	ソフトウェア使用許諾契約書

安全にご使用いただくために.....10

1.	注意記号の説明	.11
2.	取り扱い上の注意	.12
3.	セキュリティに関する注意	.13
	1. セキュリティリスク	.13
	2. セキュリティ対策事例	.13

1.	開発に必要なもの	.15
2.	SDKスペック	.16
3.	SDK内容	.17
4.	開発環境構成	.18
5.	SDKのインストール	.19
	1. SDKに必要なツールチェーンのインストール	.20
	2. CONPROSYS linux SDKのインストール	.21

クロスビルド環境設定24

1.	SDカード作成フロー	.25
2.	初期設定	.26
2	理培乳学	20

1.	システム起動について	.31
2.	SD起動用SDカードの作成	.32
	1. SDカードへ直接書込み	.33
	2. SDイメージファイルを作成しイメージ書込みソフトでSDカードへ書込み	.35
3.	内蔵NOR FLASH起動用のインストールSDカードの作成	.37
	1. 内蔵NOR FLASH起動用インストールするためのrootfsセクションを作成	.37
	2. 内蔵NOR FLASHインストール用rootfsセクションへのコピー	.39
	3. 内蔵NOR FLASHインストール用SDカードの作成(SDカードへ直接書込み)	.40
	4. 内蔵NOR FLASHインストール用SDカードの作成(SDイメージファイル作成)	.42
4.	内蔵NOR FLASHへのインストール	.43

1.	ターゲット起動方法	.45
	1. SDカードからの起動	.45
	2. 内蔵NOR FLASHから起動	.45
2.	シリアルケーブル接続によるログイン	.46
3.	ssh接続によるログイン	.47
4.	ターゲットの起動シーケンス	.48
5.	ターゲットのネットワーク設定	.49
6.	ドライバソフトの起動方法	.55
7.	Web Setupについて	.56
	1. 設定メニュー	.57
	2. ステータスメニュー	.57
	3. メンテナンスメニュー	.58
	4. 終了メニュー	.58
8.	DIP SWによる初期化設定	.59

ビルド......60

1.	ビルド手順	.61
2.	ターゲットのbootloaderのビルド	62
	1. SDカード起動用のビルド	.62
	2. 内蔵NOR FLASH起動用のビルド	.62
3.	ターゲットのkernelのビルド	.63
4.	CPS-MxS341シリーズドライバのビルド	.65
5.	ターゲットのサンプルライブラリのビルド	.66
6.	ターゲットのサンプルアプリケーションのビルド	67
7.	軽量版rootfsのビルド	69
8.	内蔵NOR FLASH起動用ramdisk.xzのビルド	70

1.	ブロック図	.72
2.	デバイスI/F	.77
3.	FPGA I/Oマップ	.82
	1. [コンパクトタイプ CPS-Mx341-ADSCx / DSxシリーズ]	.82
	2. [スタックタイプ CPS-MxS341-DSxシリーズ]	.89
4.	内蔵NOR FLASHメモリマップ	.90
5.	コンパクトタイプシリーズ LED/DIP Switch/Switch制御	.91
6.	スタックタイプシリーズ DIO/LED/DIP Switch/Switch制御	.92
7.	オプションボード制御	.95
8.	ターゲット搭載アプリケーション	.97

1. 概要

CONPROSYS Linux SDK(Software Development Kit) は、CONPROSYS上で動作するモジュールの生成 するためのソフトウェア開発環境を目的とします。

本SDKは、次の範囲になります。

- CONPROSYSが動作するソフトウェアを生成するための開発用ホストPC上のツール (ソースコード(kernel, ライブラリ、ドライバ等)やビルドスクリプト等)
- CONPROSYSのソフトウェアをSDカードに書込むための開発用ホストPC上のツール
- CONPROSYS上のソフトウェア動作をモニタするためのツール (シリアルコンソール等)

SDK範囲(SCOPE)

本SDKは、CONPROSYSのソフトウェアモジュールを開発用ホストPC上でクロスビルドによって生成します。 CONPROSYS上でセルフビルドを行いたい場合は、セルフビルド版のマニュアルを参照ください。 また、本SDKではセルフビルド版のCONPROSYS Linux SDKを生成することも可能です。詳細については、 『ビルド (P60)』以降の章を参照ください。

2. 対応するCONPROSYS製品一覧

本SDKに対応する製品は次に示します。

【コンパクトタイプ M2Mコントローラシリーズ】

CPS-MC341-ADSCxシリーズマルチI/OモデルCPS-MC341G-ADSC1シリーズマルチI/O + 3G(日本国内 / グローバル)モデルCPS-MC341Q-ADSC1マルチI/O + 920MHz帯通信モデルCPS-MC341-A1アナログ入出力モデルCPS-MC341-DSxシリーズデジタル入出力モデルCPS-MC341-DS11デジタル入出力モデル

【コンパクトタイプ M2M Gatewayシリーズ】

 CPS-MG341-ADSC1シリーズ
 マルチI/Oモデル

 CPS-MG341G-ADSC1シリーズ
 マルチI/O + 3Gモデル

 CPS-MG341G5-ADSC1
 マルチI/O + LTEモデル

【スタックタイプ M2Mコントローラシリーズ】

CPS-MCS341-DS1シリーズ	CPUモジュール
CPS-MCS341G-DS1	CPUモジュール + 3Gモデル
CPS-MCS341G5-DS1	CPUモジュール + LTEモデル
CPS-MCS341Q-DS1	CPUモジュール + 920MHz帯通信モデノ

【スタックタイプ M2M Gatewayシリーズ】

CPS-MGS341-DS1	CPUモジュール
CPS-MGS341G5-DS1	CPUモジュール + LTEモデル

※ M2Mコントローラシリーズに搭載されているHMI、VTC、OPC-UA、Modbus等の機能は、 CONPROSYS Linux SDKに備わっておりません。別途、ソフトウェアの組込が必要です。

 ※ M2M Gatewayシリーズに搭載されているHMI、VTC、OPC-UA、Modbus、PLC、CNC等の機能は、 CONPROSYS Linux SDKに備わっておりません。別途、ソフトウェアの組込が必要です。
 ※ PACシステムシリーズ、nanoシリーズは対応しておりません。

3. ソフトウェア使用許諾契約書

本契約は、お客様と株式会社コンテック(以下「当社」といいます。)との間で、本製品に含まれるソフ トウェアプログラム(以下「本ソフトウェア」といいます。)の使用許諾に関して合意するものです。本 ソフトウェアを使用、又は本ソフトウェアをインストールした機器を使用することによって、お客様は本 契約の各条項に同意されたものとさせていただきます。このお客様の同意をもって、本契約は成立し、効 カを生じます。本契約に同意されない場合、本ソフトウェアの使用、又は本ソフトウェアをインストール した機器を使用することはできません。

第1条(知的財産権)

本ソフトウェア及びマニュアル等付属するドキュメント並びにその複製物(以下「本ソフトウェア等」といいます。)の著作権、特許権その他知的財産権は当社もしくは正当な権利者が所有するものであり、お客様には、本契約書において明示的に許諾されたものを除き、何らの権利も発生しません。

第2条(使用許諾)

- 1. 当社は、お客様に対し、本ソフトウェアに対応する当社ハードウェア製品を使用する目的で、本ソフトウ ェアをインストール及び使用する非独占的な権利を許諾します。
- お客様は、緊急時のバックアップの目的でのみ、本ソフトウェアを使用する上で最低限必要な本数に限り、本ソフトウェアを複製することができます。但し、複製物には、当社が提供する、本ソフトウェアについての諸権利に関する表示を添付するものとします。
- お客様は、当社がライブラリとして提供するソフトウェアをお客様の作成するソフトウェアに組み込む ことができます。

第3条(利用の制限)

お客様は、次の各号に定める行為を行わないとします。

- (1) 本契約に定める場合以外の本ソフトウェアから派生するソフトウェアの制作
- (2) 本契約に定める場合以外の本ソフトウェアの複製
- (3) 本ソフトウェアの改変、翻案、逆コンパイル、逆アセンブル、リバース・エンジニアリング
- (4) 本ソフトウェア上の権限の表示や商標の削除又は変更

第4条(免責)

- 1. 当社は本ソフトウェアに関しいかなる保証もいたしません。
- 本ソフトウェアをダウンロード、インストール、使用又は利用した結果、ハードウェア又はデータに支障が生じた場合等、本ソフトウェアに起因し又は関連して損害が発生した場合であっても、当社は一切責任を負いません。本ソフトウェアを複製し、組み込み又は改変したソフトウェア及びこれらを使用又は利用して作成されたソフトウェアについても同様とします。

第5条(譲渡)

- 1. お客様は、次の各号に定める条件を全て満たした場合に限り、本ソフトウェア及び本契約において許諾 されたお客様の権利を第三者に対し、譲渡することができます。
 - (1) 本契約書と共に本ソフトウェア等を全て当該第三者に譲渡すること
 - (2) 本ソフトウェアがダウンロードされた当社のハードウェア製品の全てを当該第三者に譲渡すること(3) 譲渡を受ける方が本契約の条件に同意すること
- 前項の規定によって本ソフトウェア及び権利の譲渡がなされた場合には、譲渡を受けた方は、譲渡を受けたときからこの契約に拘束されるものとします。

第6条(契約の解除)

- 1. お客様が本契約の各条項に従わなかった場合、当社は、お客様に対し、何らの通知・催告を行うことなく 直ちに本契約を終了させることができます。
- 2. 本契約の終了と同時に、お客様に与えられていた使用許諾は全て失われます。直ちに本ソフトウェアの 一切の使用を中止し、本ソフトウェアをアンインストールし、全ての複製物を破棄するものとします。

第7条(物理的欠陥について)

1. 本ソフトウェア等が格納されている記録媒体に本ソフトウェア等の使用に支障をきたす物理的欠陥があった場合、当社は、お客様が本ソフトウェア等をお受け取りになった日から30日以内にご購入いただいた販売店を通して記録媒体を交換するものとします。

第8条(ソフトウェアプログラムに関する情報)

- 1. 本ソフトウェアに関する各種情報やアップデートプログラムは、当社ウェブサイトで提供するものとし ます。
- 前項の情報やアップデートプログラムは、本契約に基づきお客様に対して許諾されます。お客様は、必要に応じて独自の判断でこれらの情報やアップデートプログラムを、使用することができますが、その場合には、その情報やアップデートプログラムについても本契約の条項を遵守しなければなりません。

第9条(輸出規制)

- 1. 本ソフトウェア等を外国に持ち出す場合には、お客様は日本国外国為替及び外国貿易法、米国輸出管理 法及びその他の国の法令を遵守しなければなりません。
- お客様は、本ソフトウェア等を核兵器、生物化学兵器の設計、開発、製造若しくはミサイルの設計、開発、製造に使用するおそれがある個人又は法人に譲渡、輸出又は再輸出してはいけません。
- 次の各号で定める国、地域、個人又は法人に、本ソフトウェア等を譲渡、輸出、再輸出してはいけません。
 - (1) キューバ、イラン、イラク、リビア、北朝鮮
 - (2) 輸出貿易管理令に基づく「外国ユーザーリスト」又は、米国商務省の「Denied Persons List」に記載されている個人又は法人
 - (3) 日本国政府、米国政府、その他関係国の政府により指定された国、地域、個人又は法人

第10条(準拠法)

1. 本契約は日本国法に従い理解、解釈されるものとします。

第11条(管轄の合意)

1. 本契約ないし本ソフトウェアに関して紛争が生じ、訴訟提起等の法的手続きが必要となった場合には、 大阪簡易裁判所ないし大阪地方裁判所をもって、第1審の専属的合意裁判所とします。

第12条(契約の分離)

1. 本契約の一部の条項が無効とされ又は法的強制力を失ったとしても、その他の条項には影響を与えることはなく、各条項は有効であり、法により許された範囲内で法的強制力を有するものとします。

安全にご使用いただくために

1. 注意記号の説明

本書では、人身事故や機器の破壊をさけるため、次のシンボルで安全に関する情報を提供しています。 内容をよく理解し、安全に機器を操作してください。

⚠️危険	「死亡または重傷を負うことがあり、かつその切迫の度合いが高い内容」を示しま す。
▲警告	「死亡または重傷を負うことが想定される内容」を示します。
⚠注意	「傷害を負うことが想定されるか、または物的損害の発生が想定される内容」を示 します。

2. 取り扱い上の注意

⚠注意

- ●本製品または本書は機能追加、品質向上のため予告なく仕様を変更する場合があります。継続的にご利用いただく場合でも、必ず当社ホームページのマニュアルを読み、内容を確認してください。
- ●本製品を改造しないでください。
 改造をしたものに対しては、当社は一切の責任を負いません。
- ●本製品の運用を理由とする損失、逸失利益などの請求につきましては、前項にかかわらず、いかなる責任も負いかねますのであらかじめご了承ください。

3. セキュリティに関する注意

ネットワークに接続する際は、存在するセキュリティリスクを考慮の上、セキュリティ対策事例を参考に本 体および関連するネットワーク機器を適切に設定してください。

1. セキュリティリスク

- 外部ネットワークからの不正侵入に伴うシステムの停止、データの破損、情報の窃取、マルウェア※1 への感染。
- 侵入後にその機器を踏み台として、外部ネットワークへの攻撃。(被害者から加害者になる)
- 外部へのネットワーク接続に伴う意図しない情報漏洩。
- これら事故の二次被害として、風評被害、損害賠償負担、信用の失墜、機会損失等。

※1: マルウェア(Malicious Software): 悪意あるプログラム。ユーザーの望まない動作をするプログラム

2. セキュリティ対策事例

- 初期パスワードを変更する。(パスワード設定方法は、ご使用の製品の解説書/マニュアルを参照してください)
- パスワード強度の高いものを設定する。

半角英字小文字、大文字、数字等を含み、類推されにくいパスワードを使用する

- 定期的にパスワードを変更する。
- 不要なネットワークサービスや、不要な機能を停止(無効化)する。
- ネットワーク接続機器において、ネットワークでのアクセス元を制限する。※2
- ネットワーク接続機器において、ネットワークの解放ポートを制限する。※2
- 専用ネットワークやVPN※3 など閉域網を使ってネットワークを構築する。

※2: 設定方法はネットワーク機器のメーカー各社へお問い合わせください。

※3: VPN(Virtual Private Network): 通信経路を認証や暗号化を用いて保護することにより、第三者が 侵入することができない、安全なネットワークです。

不正アクセスの手段や抜け道(セキュリティホール)は、日夜新たに発見されており、それを防ぐ完璧 な手段はありません。

インターネット接続には、常に危険が伴うことをご理解いただくとともに、常に新しい情報を入手し、 セキュリティ対策を行うことを強くおすすめします。

1. 開発に必要なもの

- 開発用ホストPC (Linux)
- SDHCカード (2Gbyte以上。SDXC非対応)
- シリアルモニタ用ケーブル (推奨ケーブル: FTDI製 TTL-232R-3V3-AJ)
- LAN Cable

2. SDKスペック

開発用ホストPC Linux Distribution:	Ubuntu 14.04 / 16.04 (64bit版) Desktop	
	40Gbyte以上の空きHDD容量必要	
	sudoの実行出来る管理者権限ユーザー	
ターゲットKernel version:	3.2.0	
ターゲットDistribution:	arm版 Ubuntu 14.04 (SDブート用のみ)	
クロスコンパイルGCC version:	gcc 4.9 (Hardware float) / gcc 4.7 (Software float)	

必要なLinux toolchain:

apt, gcc-arm-linux-gnueabi, libncurses5-dev, gawk, u-boot-tools, openssh-server,

samba, binutils-arm-linux-gnueabi, binutils-arm-linux-gnueabihf, xinetd, kpartx, gperf, bison, flex ※上記は本SDKを動作させるための必要なものを示しています。

各々の開発環境で他に必要なパッケージがあれば、別途入手しインストールしてください。

(例:git,wget,subversion等)

3. SDK内容

- SDKドキュメント
- クロスコンパイラ/ツールチェーン パッケージ (Debian/Ubuntu用):
 gcc-arm-linux-gnueabihf-4.9.3, gcc-arm-linux-gnueabi-4.7, libncurses5-dev, gawk, u-boot-tools, openssh-server, samba, binutils-arm-linux-gnueabi, binutils-arm-linux-gnueabihf, xinetd, kpartx, gperf, bison, flex
- ビルドツール
- ソースコード

u-boot, kernel, サンプルアプリケーション, サンプルライブラリ, サンプルドライバ

• CONPROSYS製品毎のベースモジュール(u-boot, kernel, 設定等)

4. 開発環境構成

ホストPC(ビルド、モニター用)とターゲットの構成例を次に示します。

例1) 開発ホストPC1台でビルドとターゲットにシリアルモニタを使用する場合

Linux PC1台でビルドおよびシリアルモニタリングする場合

例2) 開発ホストPCでビルド(またはソースコード編集)、ターゲットにシリアル モニタを別のWindows PCの2台で使用する場合

ビルド用にLinux PC1台、シリアルモニタリング用にWindows PCを使う場合

例3) Windows OS等に仮想OSシステム(VM Ware, Virtual BOX等)を入れ て、その上でLinux OSをインストールし開発ホストPCとして使用する場 合

1台のPCでビルド用にLinux(VM Ware利用)、シリアルモニタリング用に Windowsを使う場合

5. SDKのインストール

ダウンロード版またはDVD版を次のように準備します。

♦ ダウンロード版(tgzファイル)の場合 :

1 ダウンロードした.tgzファイルを展開します。

tar xvfz CPS_SDK_installer_xxxx.tgz[-C 展開先ディレクトリ]

2 展開先のディレクトリに移ります。 ※展開先がカレントの場合は必要ありません。

◆ ダウンロード版(isoファイル)の場合:

ダウンロードした.isoファイルをマウントします。
 マウント先ディレクトリは任意で作成してください。
 sudo -E mount -o loop CPSSDK_xxxx.iso マウント先ディレクトリ

2 マウント先のディレクトリに移ります。

◆ DVD版の場合:

1 DVDメディアをホストPCに挿入します。

2 挿入したメディアは自動マウントされるので、そのマウント先のディレクトリに移ります。

1. SDKに必要なツールチェーンのインストール

◆ ホストPCがインターネット接続可能の時

ubuntu のOS上で次のツールチェーンをapt-getコマンドによってインストールします。

libncurses5-dev, gawk, u-boot-tools, openssh-server, samba, binutils-arm-linux-gnueabi, binutilsarm-linux-gnueabihf, xinetd, kpartx, gcc-4.7-arm-linux-gnueabi, gperf, bison

ツールチェーンをインストールする前に、apt-getのパッケージリストを更新してください。

apt-getのパッケージリスト更新コマンド:

sudo apt-get update

インストールコマンド:

sudo apt-get install libncurses5-dev gawk u-boot-tools openssh-server samba ¥

binutils-arm-linux-gnueabi binutils-arm-linux-gnueabihf xinetd kpartx gperf ¥

bison flex

コンパイラはCONPROSYS linux SDK付属のパッケージをインストールします。

インストールコマンド: cd Toolchain sudo ./compiler_pkginstall.sh cd ..

◆ ホストPCがインターネット接続出来ない時

CONPROSYS linux SDKには必要なツールチェーンのパッケージを用意しています。[Toolchain]のディレク トリに移り、toolchain_pkginstall.shを実行してください。(『CONPROSYS linux SDKのインストール (P21)』で説明する./install_sdk.shでもインストールできます。)

コマンド: cd Toolchain sudo ./toolchain_pkginstall.sh cd ..

2. CONPROSYS linux SDKのインストール

次のコマンドでSDKのインストールを開始します。

コマンド:

./install_sdk.sh [-C インストール先ディレクトリ] [-t]

オプション:

-C インストール先ディレクトリ

指定されるインストール先ディレクトリを生成し、そのディレクトリ下にインストールします。

-t

SDKに必要なクロスコンパイラ等のツールチェーンをインストールします。

このオプションを指定した場合、ツールチェーンを開発ホストPCヘインストールするため、管理者パスワードを要求されます。

※インストール先ディレクトリが指定されない場合は、カレントディレクトリ下に"CPS_SDK"というディ レクトリを自動生成され、そのディレクトリにインストールされます。isoファイルをマウントした場合 やDVDメディアの場合、カレントディレクトリ下にディレクトリは生成出来ませんので、必ずインスト ール先ディレクトリを指定してください。

※インストール先ディレクトリは、ログインユーザーのhomeディレクトリ下を推奨します。

コマンド例:

./install_sdk.sh -C ~/CPS_SDK

インストール後のディレクトリ構成は次のようになります。

インストール後のディレクトリ構成

[Document]

SDKのドキュメントファイルを格納しているディレクトリです。

[application]

アプリケーションのソースコードを格納しているディレクトリです。

[base]

targetのベースとなるbootセクションとrootfsセクションを格納しているディレクトリです。

[tools]

SDKのツール群です。

[driver]

ドライバのソースコードを格納しているディレクトリです。

[kernel]

kernelのソースコードを格納しているディレクトリです。

[lib]

ライブラリのソースコードを格納しているディレクトリです。

[ramdisk]

NOR Flashにインストールするrootfsをパッケージしたramdiskを生成するディレクトリです。

[rootfs]

内蔵NOR Flashブート用等に使用する軽量版rootfs(root file system)のソースコードを格納しているディレクトリです。

[u-boot]

u-bootのソースコードを格納するディレクトリです。

[target]

CONPROSYSの製品毎にSD起動させるためのセクションを生成するディレクトリです。configure.sh実 行後、ターゲット用のディレクトリを生成し、ビルドしたモジュール(boot, kernel, driver, application) の格納先になります。

クロスビルド環境設定

SDカードの作成については『SD起動用SDカードの作成 (P32)』を参照ください。 各ビルドについては『ビルド (P60)』を参照ください。

2. 初期設定

SDKインストール先ディレクトリ下で./configure.shを実行しビルドを行うための初期設定を行います。このコマンドを実行することによって次の環境ファイルとディレクトリを生成します。このコマンドは新規で ターゲット向けのモジュールを生成する時のみでよいです。

- ビルドするための環境設定ファイル(sdkenv.txt)
- kernelの.configファイル
- targetディレクトリ下に機器に応じたSDカードに書込むためのファイルシステム ("boot"セクション, "rootfs"セクション)

コマンド:

./configure.sh

※途中root権限のコマンドを実行するために、パスワードを要求されることがあります。 パスワードを入力して処理の実行を進めてください。

コマンドを実行すると、ターゲットとなるCONPROSYSの情報を入力するモードになります。メニューに従って該当する番号を入力してください。

CONPROSYS Product:

ターゲットの製品を番号で入力します。

1) CPS-MC341-ADSCx	コンパクトタイプ マルチI/Oモデル	
	CPS-MC341-ADSCxシリーズ, CPS-MC341G-ADSC1シリーズ(3Gモデル),	
	CPS-MC341Q-ADSC1(920MHz帯通信モデル),	
	CPS-MG341-ADSC1シリーズ, CPS-MG341G-ADSC1シリーズ(3Gモデル),	
	CPS-MG341G5-ADSC1(LTEモデル)	
2) CPS-MC341-Ax	コンパクトタイプ アナログ入出カモデル	
	CPS-MC341-A1	
3) CPS-MC341-DSx	コンパクトタイプ デジタル入出カモデル	
	CPS-MC341-DSxシリーズ	
4) CPS-MC341-DS1x	コンパクトタイプ デジタル入出カモデル(USBポート付)	
	CPS-MC341-DS11	
5) CPS-MxS341-DSx	スタックタイプ	
	CPS-MxS341-DS1シリーズ,	
	CPS-MCS341G-DS1(3Gモデル), CPS-MxS341G5-DS1(LTEモデル),	
	CPS-MCS341Q-DS1(920MHz帯通信モデル)	

LANタイプ:

LANのタイプを番号で入力します。

1) 1lan (HUB mode) (SINGLE EtherMAC)	EtherMACを1つとし、EtherポートをHUBモードで使用。
2) 2lan (DUAL EtherMAC)	EtherMACを各々のEtherポート毎に2つ使用。

セルフビルド版CONPROSYS Linux SDKのrootfsタイプのように、Ether Aポートをデバッグ用にPCと直接 接続し、Ether Bポートをインターネットに接続するような場合は、2lanを選択してください。

rootfsタイプ:

ターゲットのrootfsタイプを番号で入力します。SDK付にはセルフコンパイラが付属しており、CONPROSYS 上でソフトウェアの開発が行えます。

1) light (busybox)	軽量版rootfs
2) Ubuntu 14.04	Ubuntu 14.04

3) Ubuntu 14.04 (include SDK) Ubuntu 14.04 SDK付(セルフビルド版CONPROSYS Linux SDK)

搭載ツールの選択:

軽量版rootfsのrootfsタイプを選択した場合、搭載ツールを選択出来ます。搭載したいツールのタイプを番号 で入力してください。

1) Wireless tools, Apache 2.4, PHP5	Wirelessツール, Apache 2.4, PHP5
0) None	搭載ツールなし

クロスコンパイラタイプ:

クロスコンパイラのタイプを番号で入力します。軽量版rootfsのrootfsタイプを選択した場合、入力してください。

- 1) gnueabi (default) armクロスコンパイラ
- 2) gnueabihf armハードウェアフロート対応クロスコンパイラ

Ubuntu14.04のrootfsを選択した場合はgnueabihfが自動選択されます。(入力メニューは表示されません)

configure.shの実行後、targetディレクトリ下にtarget用のディレクトリとベースとなるbootセクション と./configureで選択したrootfsセクションのディレクトリ/ファイルを生成します。次の構成図は、CPS-MC341-ADSCシリーズ 2 LAN type / Ubuntu14.04 with SDKを指定した場合のディレクトリ例です。

target以下のディレクトリ構成

```
~/
  T
  +-- [CPS_SDK]
        L
                                          Targetディレクトリ
        +-- [target]
              +-- [CPS-MC341-ADSCX.2lan] CPS-MC341-ADSC(2LANタイプ)用ディレクトリ
                   +-- [boot]
                                          bootセクション
                         +-- MLO
                         +-- u-boot.img
                         +-- uEnv.txt
                         +-- uImage.
                   +-- [Ubuntu14.04_dev]
                                              rootfsセクション (SDカード用)
                          +-- [bin]
                          +-- [boot]
                          +-- [dev]
                          +-- [etc]
                          +-- [home]
                          +-- [lib]
                          +-- [media]
                          +-- [mnt]
                          +-- [opt]
                          +-- [proc]
                          +-- [root]
                          +-- [sbin]
                          +-- [selinux]
                          +-- [srv]
                          +-- [sys]
                          +-- [tmp]
                          +-- [usr]
                          +-- [var]
```

3. 環境設定

アプリケーションやカーネル等をビルドする前にSDKインストール先ディレクトリ下で./configure.shによって生成された sdkenv.txtでビルドするための環境変数を設定してください。

コマンド:

source sdkenv.txt

この環境変数の設定が行われていなければ、この項以降に説明するビルドやFirmware書き込み方法等の操作が正常に行えないことがありますので注意ください。

ターゲッ トのFirmware書き 込み方法

1. システム起動について

ターゲットの起動には、次の方法があります。

- SDカードからシステムを起動
- 内蔵NOR FLASHからシステムを起動

SDからのシステム起動について、SD起動用のFirmwareをSDカードに書込み、そのSDカードを挿入しシステムを起動させます。

内蔵NOR FLASHからのシステム起動について、下記の2ステップを行うことで内蔵NOR FLASHからの起動が可能となります。

1 内蔵NOR FLASHへシステムをインストールためのインストールSDカードの作成

2 インストールSDカードを挿入しSDカードより起動させ、内蔵NOR FLASHへシステムをインストール

各々の起動方法に応じたFirmwareの書込み方法を次に示します。

2. SD起動用SDカードの作成

SD起動用のSDカードは次の方法で作成することが出来ます。

1) SDカードへ直接書込み

2) SDイメージファイルを作成しイメージ書込みソフトでSDカードへ書込み

1. SDカードへ直接書込み

1 ホストPCにSDカードを挿入し認識させます。

SDカードがどのファイルシステムで認識しているか、partedコマンド等で調べることができます。 例)

sudo parted -l

SDカードが自動マウントされている場合は、アンマウントしてください。

2 SDカードのパーティションの生成を行います。

例) SDカードのデバイスが /dev/sdbの場合

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2PartSDCard.sh /dev/sdb

このコマンドで次の2つのパーティションが生成されます。

- Bootパーティション W95 FAT32 (LBA)
- rootfsパーティション ext3
- **3** SDカードをマウントします。

上記で生成したパーティションをマウントする先のディレクトリを予め生成しておきます。 下記は、/mediaの下にboot用とrootfs用のディレクトリを生成するコマンド例です。

sudo mkdir /media/boot sudo mkdir /media/rootfs

これらのマウント先に上記で生成したSDカードのパーティションをマウントします。 下記はSDカードが/dev/sdbの場合のコマンド例です。

sudo mount /dev/sdb1 /media/boot sudo mount /dev/sdb2 /media/rootfs

4 targetの下に作成したbootディレクトリとrootfsディレクトリのファイルをSDカードにコピーします。

[bootパーティション (fat32)] sudo cp -p \${CPS_SDK_INSTALL_FULLDIR}/boot/* /media/boot

[rootfsパーティション (ext3)]

sudo -E cp -rp \${CPS_SDK_INSTALL_FULLDIR}/\${CPS_SDK_ROOTFS}/* /media/rootfs

5 SDカードにコピーしたファイルに対し同期を取ります。

syncコマンドで同期を取る前にSDカードをアンマウントし、SDカードを抜き取った場合、SDカードに ファイルが正しく書けていないことがあります。そのようなことを防止するためにsyncコマンドを実行 しておいてください。

6 SDカードをアンマウントし、SDカードを抜き取ります。

sudo umount /media/boot sudo umount /media/rootfs

2. SDイメージファイルを作成しイメージ書込みソフ トでSDカードへ書込み

1 SDイメージファイルを作成します。

次のコマンドでイメージファイルを作成することが出来ます。

コマンド:

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2SDCardImage.sh \${CPS_SDK_ROOTFS} [-f filename] [-s size]

オプション :

-f filename

出力するイメージファイル名を指定出来ます。指定しない場合は SD.img に出力されます。

-s size

出力するイメージファイルサイズを指定出来ます。指定しない場合は、2000Mbyteで出力されます。

コマンド例: ファイル名をターゲット名_rootfs.imgとし、サイズを4000Mbyteにしたい場合

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2SDCardImage.sh \${CPS_SDK_ROOTFS} ¥

-f \${CPS_SDK_TARGET_NAME}_\${CPS_SDK_ROOTFS}.img -s 4000

2 イメージファイルをSDカードに書込みます。

[Windows版]

SDカードへの書込みをWin32 Disk Imagerを使った例で示します。

予め下記のサイトよりWin32 Disk Imager のインストーラをWindows PCにダウンロードし、インストールしてください。

https://sourceforge.net/projects/win32diskimager/

- i) Windows PCにSDカードを挿入します。
- ii) Win32 Disk Imagerを起動します。

Win32 Disk Imagerアプリケーション

\$	Win32 Disk Imager - 1.0	- 🗆 🗙
Image File		Device
Hash None 🔻 G	ienerate Copy	
Read Only All Progress	ocated Partitions	
Cancel Waiting for a tas	Read Write Verify On	ly Exit

- iii) 書込むimageファイルを選択します。
 Device欄のドライブが書込み先のSDカードになっているか確認し、Writeボタンを押して書込みを
 開始します。
- iv) 書込みが終了すると通知のポップアップが表示されるのでOKボタンを押し、SDカードを抜いてください。

[Linux版]

i) SDカードがマウントされている場合、アンマウントします。

sudo umount /dev/sdb

ii) ddコマンドでSDカードヘイメージファイルを書込みます。

sudo dd if=イメージファイル名 of=/dev/sdb bs=1M

iii) syncコマンドで同期します。

sync

iv) コマンドが終了したら、SDカードを抜いてください。
3. 内蔵NOR FLASH起動用のインストール SDカードの作成

内蔵NOR FLASH起動用のインストールSDカードを作成する前に下記の準備が必要です。

- 内蔵NOR FLASH起動用インストールするためのrootfsセクションを作成
- カスタマイズしたbootloaderやアプリケーションなどのビルドとインストール用rootfsセクションへのコ ピー

1. 内蔵NOR FLASH起動用インストールするための rootfsセクションを作成

ベースとなる内蔵NOR FLASHインストール用のrootfs (InstallerForFlash)を作成します。

コマンド:

./create_FlashInstaller.sh

このコマンド実行後にInstallerForFlashというディレクトリがターゲット向けのディレクトリ下に生成され ます。CPS-MC341-ADSCシリーズ 2 LAN typeのビルド環境下で生成した場合のディレクトリ例を次に示 します。

NOR Flashインストール用のrootfsが生成された時のディレクトリ構成

アプリケーションデータ mtd5.tgz

```
[mtd5.tgz]
|
+-- [etc]
| +-- passwd
| +-- group
| +-- [conprosys]
| +-- config.ini
| +-- CPS_SDK_VER
+-- [opt]
+-- startup.sh
```

2. 内蔵NOR FLASHインストール用rootfsセクション へのコピー

カスタマイズビルドしたbootloaderやアプリケーションソフト等があれば、インストール用rootfs (InstallerForFlash)のインストールディレクトリ(/InstallToMTD)へコピーします。

コピー前にビルドによって生成されたファイルがあるか確認の上、コピーをしてください。

[bootloader]

『内蔵NOR FLASH起動用のビルド (P62)』の項でビルドしたMLO.byteswap u-boot.imgをコピーします。 ビルド方法については『内蔵NOR FLASH起動用のビルド (P62)』の項を参照ください。

コマンド:

cd \${CPS_SDK_ROOTDIR}/u-boot

cp -p MLO.byteswap u-boot.img \${CPS_SDK_INSTALL_FULLDIR}/InstallerForFlash/InstallToMTD

[kernel]

コマンド:

cd \${CPS_SDK_ROOTDIR}/kernel/arch/arm/boot/

cp -p uImage \${CPS_SDK_INSTALL_FULLDIR}/InstallerForFlash/InstallToMTD/¥

uImage.\${CPS_SDK_BOARD_NAME}.\${CPS_SDK_LAN_TYPE}

[ramdisk]

コマンド:

cd \${CPS_SDK_ROOTDIR}/ramdisk

make install

本SDKの添付のインストールプログラム(shell script)は、これらの4つのファイル(MLO.byteswap,

u-boot.img, uImage, ramdisk.xz)と機器専用のアプリケーションデータ(mtd5.tgz)をNOR FLASHヘイン ストールを行います。

u-bootオプション用へのインストールは行っていませんので、それを行いたい場合は、次のファイルを編集 してください。

\${CPS_SDK_INSTALL_FULLDIR}/InstallerForFlash/home/flashwriter.sh

このファイルでは参考用として、下記の内容をコメントアウトした状態で記載されています。

mtd2: ddによるコピー

この内容を参考にインストール方法をカスタマイズしてください。

NOR FLASHの容量等についての詳細は『内蔵NOR FLASHメモリマップ (P90)』を参照ください。

3. 内蔵NOR FLASHインストール用SDカードの作成 (SDカードへ直接書込み)

内蔵NOR FLASHインストール用のSDカードは次の手順で作成します。

基本的な手順はSD起動用のものと同じですが、rootfsのコピー元が違います。(こちらのrootfsのコピー元は InstallerForFlashになります)

1 ホストPCにSDカードを挿入し認識させます。

SDカードがどのファイルシステムで認識しているか、partedコマンド等で調べることができます。 例)

sudo parted -l

2 SDカードのパーティションの生成を行います。

例) SDカードのデバイスが /dev/sdbの場合

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2PartSDCard.sh /dev/sdb

このコマンドで次の2つのパーティションが生成されます。

- Bootパーティション W95 FAT32 (LBA)
- rootfsパーティション ext3

上記で生成したパーティションをマウントする先のディレクトリを予め生成しておきます。 下記は、/mediaの下にboot用とrootfs用のディレクトリを生成するコマンド例です。

sudo mkdir /media/boot sudo mkdir /media/rootfs

これらのマウント先に上記で生成したSDカードのパーティションをマウントします。 下記はSDカードが/dev/sdbの場合のコマンド例です。

sudo mount /dev/sdb1 /media/boot

sudo mount /dev/sdb2 /media/rootfs

4 targetの下に作成したbootディレクトリとrootfsディレクトリのファイルをSDカードにコピーします。

[bootパーティション (fat32)]

sudo cp -p \${CPS_SDK_INSTALL_FULLDIR}/boot/* /media/boot

[rootfsパーティション (ext3)]

sudo -E cp -rp \${CPS_SDK_INSTALL_FULLDIR}/InstallerForFlash/* /media/rootfs

5 SDカードにコピーしたファイルに対し同期を取ります。

sync
sync
sync

syncコマンドで同期を取る前にSDカードをアンマウントし、SDカードを抜き取った場合、SDカードに ファイルが正しく書けていないことがあります。そのようなことを防止するためにsyncコマンドを実行 しておいてください。

6 SDカードをアンマウントし、SDカードを抜き取ります。

sudo umount /media/boot sudo umount /media/rootfs

4. 内蔵NOR FLASHインストール用SDカードの作成 (SDイメージファイル作成)

1 SDイメージファイルを作成します。

次のコマンドでイメージファイルを作成することが出来ます。

コマンド:

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2SDCardImage.sh InstallerForFlash [-f filename] [-s size]

オプション:

-f filename

出力するイメージファイル名を指定出来ます。指定しない場合は SD.img に出力されます。

-s size

出力するイメージファイルサイズを指定出来ます。指定しない場合は、2000Mbyteで出力されます。

コマンド例: ファイル名を"ターゲット名_InstallerForFlash.img"とする場合

sudo -E \${CPS_SDK_ROOTDIR}/tools/mk2SDCardImage.sh InstallerForFlash ¥

-f \${CPS_SDK_TARGET_NAME}_InstallerForFlash.img -s 256

2 イメージファイルをSDカードに書込みます。

SDカードヘイメージファイルの書込む方法は、『SDイメージファイルを作成しイメージ書込みソフトで SDカードへ書込み (P35)』をご参照ください。

4. 内蔵NOR FLASHへのインストール

『内蔵NOR FLASHインストール用SDカードの作成(SDカードへ直接書込み)(P40)』 または『内蔵NOR FLASHインストール用SDカードの作成(SDイメージファイル作成)(P42)』で作成したSDカードを CONPROSYS本体のSD boot有効にして起動すると、自動的にNOR FLASHへの書込みが開始します。 起動方法については『SDカードからの起動 (P45)』の項を参照ください。

インストール中はST1(緑)、ST2(赤)とPower(緑)のLEDが点滅し、正常に終了するとST1(緑)とPower(緑)のLEDが点灯したままになります。

ターゲット動作確認

1. ターゲット起動方法

1. SDカードからの起動

各々のCONPROSYS本体のDIP SWがSD bootモードが有効になっていることを確認してください。

◆ コンパクトタイプ(CPS-Mx341-xxx)の場合 (Gatewayシリーズも含む)

DIP SW1の6番PINがON (SD bootモード有効)

コンパクトタイプBOOT SW設定

◆ スタックタイプ(CPS-MxS341-xxx)の場合

デバッグ用シリアルポート(3.5Φミニジャック)隣のBOOT SW(ケース中)の2番PINがON

(SD bootモード有効)

スタックタイプBOOT SW設定

『SD起動用SDカードの作成 (P32)』で作成したSDカードを挿し、本体に電源を入れてください。 ※SDカードが挿入されていない場合、内蔵NOR FLASHより起動します。

2. 内蔵NOR FLASHから起動

『SDカードからの起動 (P45)』に記載しているSD bootモードが無効になっていることを確認し、本体に 電源を入れてください。

2. シリアルケーブル接続によるログイン

ホストPCからCONPROSYSへ専用シリアルポート(3.5Φミニジャック)にシリアルケーブルを接続することで、コンソールよりCONPROSYSへログインすることができます。

シリアルの設定は次のようになります。

Baud rate:	115200 bps
Data bit:	8 bit
Parity:	none
Stop bit:	1 bit
Hardware flow:	none

ホストPCとCONPROSYSを接続するシリアルケーブルは次のものを推奨しています。 ドライバソフトはシリアルモニタを行うPCのOSに合わせてダウンロードしてください。

• FTDI製 TTL-232R-3V3-AJ

ドライバ提供URL: http://www.ftdichip.com/Drivers/VCP.htm

デフォルトのログイン/パスワードは次のようになります。

- ログイン: conprosys
- パスワード: contec
- ※外部ネットワークに接続出来る環境である場合、パスワードは『**セキュリティに関する注意 (P13)**』に 従い、必ず変更するようにしてください。

3. ssh接続によるログイン

ホストPCからCONPROSYSが同じネットワーク上で動作している場合、sshを使ってCONPROSYSへログインすることができます。

4. ターゲットの起動シーケンス

本SDKのターゲット上での起動は次の順序で実行されるようになっています。

起動シーケンス

ターゲット起動時に実行させたいコマンドは次のスクリプトファイルを編集してください。

[SDカードブートの場合]

/home/startup.sh

```
[内蔵NOR FLASHブートの場合]
```

/mnt/mtd/startup.sh

ターゲット上では、ファイルシステムがREAD ONLYモードにされているため、これらのファイルを編集する にはWRITE可能モードにしてから編集し、編集終了後はREAD ONLYモードに戻してください。

[SDカードブートの場合]

WRITE可能モード sudo rommode rw READ ONLYモード sudo rommode ro

[内蔵NOR FLASHブートの場合]

WRITE可能モード

sudo rommode_mtd rw

READ ONLYモード

sudo rommode_mtd ro

5. ターゲットのネットワーク設定

本SDKのターゲットのデフォルトネットワーク設定は次のように設定されています。

[デフォルト設定]

LAN A (eth0): 10.1.1.101

LAN B (eth1): DHCP (2 LAN Type設定時のみ)

ネットワーク設定を変更したい場合は、各々のrootfsに合わせて編集してください。

ネットワーク設定を変更したい場合はターゲット上の次のファイルをroot権限で編集してください。

/etc/conprosys/config.ini

LAN設定

項目名	設定内容	
eth0_dhcp	LAN A(eth0)のDHCP有効/無効を設定します。 有効: enabled 無効: disabled	
eth0_ipaddr	LAN A(eth0)のIPアドレスを設定します。	
eth0_netmask	LAN A(eth0)のNetmaskを設定します。	
eth0_gateway	LAN A(eth0)のゲートウェイアドレスを設定します。	
eth0_dns1	LAN A(eth0)のDNSサーバーアドレスを設定します。	
eth1_dhcp	LAN B(eth1)のDHCP有効/無効を設定します。 有効: enabled 無効: disabled	
eth1_ipaddr	LAN B(eth1)のIPアドレスを設定します。	
eth1_netmask	LAN B(eth1)のNetmaskを設定します。	
eth1_gateway	LAN B(eth1)のゲートウェイアドレスを設定します。	
eth1_dns1	LAN B(eth1)のDNSサーバーアドレスを設定します。	
ntp_addr	NTPサーバーを設定します。	
host_name	ホスト名を設定します。 初期状態においては項目がないため下記ホスト名に設定されます。 モデル名+MACアドレスの下位3バイト	

3G/LTE設定 (3G/LTEモデルのみ)

項目名	設定内容
m3g_connect	3G/LTE接続の有効/無効を設定します。 有効: enabled 無効: disabled
m3g_apn	通信サービス業者から情報提供されるAPNを設定します。
m3g_user	通信サービス業者から情報提供されるユーザーIDを設定します。
m3g_passwd	通信サービス業者から情報提供されるパスワードを設定します。
m3g_auth	通信サービス業者から情報提供される下記の認証タイプを設定します。 None PAP CHAP

無線LAN設定

項目名	設定内容	
wlan_dhcp	無線LAN(wlan0)のDHCP有効/無効を設定します。 有効: enabled 無効: disabled	
wlan_ipaddr	無線LAN(wlan0)のIPアド	レスを設定します。
wlan_netmask	無線LAN(wlan0)のNetma	skを設定します。
wlan_gateway	無線LAN(wlan0)のゲートウェイアドレスを設定します。	
wlan_dns1	無線LAN(wlan0)のDNSサーバーアドレスを設定します。	
wlan_essid	無線LAN(wlan0)のSSIDを設定します。	
wlan_encrypt	無線LAN(wlan0)の暗号化 [設定項目] 暗号化なし: WEP: WPA-PSK AES: WPA-PSK TKIP: WPA2-PSK AES: WPA2-PSK TKIP: WPA2-PSK TKIP: WPA/WPA2-PSK自動:	方式を下記の中から選び設定します。 none wep wpapsk-aes wpapsk-tkip wpa2psk-aes wpa2psk-tkip wpa2psk-tkip wpawpa2psk-auto
wlan_key	無線LAN(wlan0)の暗号化	キーを設定します。

※無線LANはUSB搭載モデルに対応しているUSB無線LANアダプターを接続することで使用可能になりま

す。

サービス起動設定

項目名	設定内容
srv_ssh	SSHサーバーの起動を設定します。 enabled: 有効 disabled: 無効
srv_ftp%	FTPサーバーの起動を設定します。 enabled: 有効 disabled: 無効
srv_samba※	SAMBAサーバーの起動を設定します。 enabled: 有効 disabled: 無効

※ Ubuntu14.04(SDKなし)の場合、FTP/sambaサーバーは別途パッケージが必要です。

また軽量版rootfsの場合、sambaサーバーは使用出来ません。

ルーター機能設定

項目名	設定内容
router	ルーター機能を設定します。 enabled: 有効 disabled: 無効
wan_if	WANインターフェイスを設定します。 3G: eth2 LTE: ppp0 Wireless LAN: wlan0 LAN A: eth0 LAN B: eth1
dhcp_server	DHCPサーバーの起動を設定します。 enabled: 有効 disabled: 無効
dhcp_server_lan_if	DHCPサーバーのLANインターフェイスを設定します。 Wireless LAN: wlan0 LAN A: eth0 LAN B: eth1
dhcp_server_top_addr	DHCP先頭アドレスを設定します。
dhcp_server_alloc_num	DHCPアドレス割り当て数を設定します。

※ Ubuntu14.04(SDKなし)の場合、DHCPサーバーは別途パッケージが必要です。

PPPoE機能設定

項目名	設定内容
рррое	PPPoE機能を設定します。 enabled: 有効 disabled: 無効
pppoe_if	PPPoEインターフェイスを設定します。 LAN A: eth0 LAN B: eth1
pppoe_user	PPPoEのユーザー名を設定します。
pppoe_password	PPPoEのパスワードを設定します。
pppoe_dns	PPPoEのDNSサーバーを設定します。
pppoe_firewall	PPPoEのファイアウォールを設定します。 NONE: 0 STANDALONE: 1 MASQUERADE: 2

※ PPPoEはUbuntu14.04 include SDKの時に設定出来ます。

他のrootfsの場合、別途PPPoEのソフトウェアが必要です。

スタティックルーティング機能設定

項目名	設定内容	
static_route	スタティックルーティング機能を設定します。 enabled: 有効 disabled: 無効	
st_route_addr_1	スタティックルーティングの宛先IPアドレスを設定します。	
st_route_gw_1	スタティックルーティングのゲートウェイアドレスを設定します。	
st_route_mask_1	スタティックルーティングのネットマスクを設定します。	
st_route_if_1	スタティックルーティングのインターフェイスを設定します。	
:		
	:	
st_route_addr_32	スタティックルーティングの宛先IPアドレスを設定します。	
st_route_gw_32	スタティックルーティングのゲートウェイアドレスを設定します。	
st_route_mask_32	スタティックルーティングのネットマスクを設定します。	
st_route_if_32	スタティックルーティングのインターフェイスを設定します。	

※項目名の数字は設定No.を示します。(最大32まで)

ポートフォワーディング機能設定

項目名	設定内容	
port_forward	ポートフォワーディング機能を設定します。 enabled: 有効 disabled: 無効	
port_fw_sif_1	ポートフォワーディング入力インターフェイスを設定します。	
port_fw_sport_1	ポートフォワーディング入力ポートを設定します。	
port_fw_daddr_1	ポートフォワーディング宛先IPアドレスを設定します。	
port_fw_dport_1	ポートフォワーディング宛先ポートを設定します。	
:		
:		
	:	
port_fw_sif_32	ポートフォワーディング入力インターフェイスを設定します。	
port_fw_sport_32	ポートフォワーディング入力ポートを設定します。	
port_fw_daddr_32	ポートフォワーディング宛先IPアドレスを設定します。	
port_fw_dport_32	ポートフォワーディング宛先ポートを設定します。	

※項目名の数字は設定No.を示します。(最大32まで)

IPフィルタ機能設定

項目名	設定内容
ipfilter	IPフィルタ機能を設定します。 enabled: 有効 disabled: 無効
ipfilter_kind_1	フィルタ種別を設定します。 許可: ACCEPT 破棄: DROP
ipfilter_proto_1	プロトコルを設定します。 tcp, udp, icmp, all
ipfilter_saddr_1	送信元IPアドレスを設定します。
ipfilter_sport_1	送信元ポートを設定します。
ipfilter_daddr_1	送信先IPアドレスを設定します。
ipfilter_dport_1	送信先ポートを設定します。
ipfilter_kind_64	フィルタ種別を設定します。 許可: ACCEPT 破棄: DROP
ipfilter_proto_64	プロトコルを設定します。 TCP, UDP, ICMP, ALL
ipfilter_saddr_64	送信元IPアドレスを設定します。
ipfilter_sport_64	送信元ポートを設定します。
ipfilter_daddr_64	送信先IPアドレスを設定します。
ipfilter_dport_64	送信先ポートを設定します。

※項目名の数字は設定No.を示します。(最大64まで)

Ubuntu14.04 include SDKの場合、PC等のWebブラウザからLAN経由でCONPROSYSに接続しネットワーク設定を行うことが出来ます。詳細は『Web Setupについて (P56)』を参照ください。

6. ドライバソフトの起動方法

手動で起動が必要なドライバや、「CPS-MxS341シリーズドライバのビルド(P65)」でビルドしたドライバ はmodprobeコマンドで起動できます。ターゲットにシリアルケーブル接続によるログイン、またはsshによ るログインによってコマンドを実行してください。

コマンド例: canドライバ(d_can_platform)の起動

modprobe d_can_platform

ドライバが起動しているかは次のコマンドで確認できます。

コマンド:

lsmod

ドライバを自動起動したい場合は、『**ターゲットの起動シーケンス (P48)**』を参考に、startup.shファイル ヘドライバを起動するコマンドを追加してください。

7. Web Setupについて

Rootfsタイプを下記のものに指定した場合、Web Setup機能を搭載します。

Ubuntu 14.04 (include SDK) Ubuntu 14.04 SDK付(セルフビルド版CONPROSYS Linux SDK) light (busybox) 軽量版rootfs

※light (busybox)は、搭載ツールにApache2, PHP5を含めた時にWeb Setup機能が搭載されます。

このWeb Setup機能にはネットワークや時刻等の設定機能、システム情報やネットワーク等の状態表示機能 等が付いています。PC等のWebブラウザからCONPROSYSのIPアドレスへ直接アクセスすることで、 CONPROSYSの設定画面が表示されます。

例: 初期設定時、LAN AポートにPCを接続して確認 http://10.1.1.101/

ログイン: admin

パスワード: password

Web設定画面

CONPROSYS Linu	IX SDK	CPS-MC341-ADSC1-931 - ver. 1.4.3
	設定	
 システム ネットワーク 時刻 サービス 	システム ネットワーク 時刻 サービス	
 ▶ ルーター機能 ▶ IPフィルタ ▶ ステータス 	ルーター機能 IPフィルタ	
 システム ネットワーク ルーター機能 IPフィルタ 	入テータス システム ネットワーク ルーター機能	
 メンテナンス パスワード 設定ファイル デフォルト設定 	ーグ メンテナンス	
 Ping トップにもどる 起動時設定にもどす English 	パスワード 設定ファイル デフォルト設定 Ping	
 ○中文 ② ヘルプ ▼終了 		

Web Setup機能は次の機能があります。

1. 設定メニュー

次の設定を行うことが出来ます。

設定メニュー項目

設定種類	設定内容	初期値	備考
システム	ホスト名	(設定無し)	設定が無い場合、下記ホスト名に設定 モデル名+MACアドレスの下位3バイト
ネットワーク	有線LAN A	10.1.1.101(固定IP)	
	有線LAN B	DHCP	
	3G/LTEネットワーク		3G/LTEモジュール搭載機種のみ
	無線LAN	DHCP	対応USB無線アダプターと接続時のみ
時刻	NTPサーバー	(設定無し)	
	手動設定		
サービス起動	SSHサーバー	システム起動時:有効	
	FTPサーバー	システム起動時:無効	
	SAMBAサーバー	システム起動時:無効	
ルーター機能	ルーター機能	システム起動時:無効	
	WANインターフェイス		
	DHCPサーバー機能	システム起動時:無効	
	スタティックルーティング設定	システム起動時:無効	設定最大数:32
	ポートフォワーディング設定	システム起動時:無効	設定最大数:32
IPフィルタ	IPフィルタ設定	システム起動時:無効	設定最大数:64

2. ステータスメニュー

次のステータスを確認することが出来ます。

ステータスメニュー項目

項目	内容			
システム	ホスト名、シリアル番号、ディストリビューション/カーネル情報、ディスク/メモ リ使用量等を表示します。			
ネットワーク	IPアドレス、MACアドレス、RX/TXバイト等を表示します。			
ルーター機能	ルーティング情報を表示します。			
IPフィルタ	IPフィルタリング情報を表示します。			
ログ	syslog等のログを表示します。			

3. メンテナンスメニュー

次のメンテナンス処理を行えます。

メンテナンスメニュー項目

項目	内容
パスワード	Web設定画面にアクセスするためのパスワードを変更できます。
設定ファイル	設定ファイルのバックアップとリストアができます。
デフォルト設定	出荷時のデフォルト設定にもどすことができます。
Ping	ネットワークの導通を確認するためPing をすることができます。

4. 終了メニュー

次の処理を行えます。

終了メニュー項目

項目	内容
保存と再起動	設定項目を保存し、再起動します。
保存とシャットダウン	設定項目を保存し、シャットダウン(システム停止)します。
保存	設定項目を保存します。
再起動	再起動します。設定項目を保存せずに再起動した場合は設定前の状態に戻ります。
シャットダウン	シャットダウン(システム停止)します。設定項目を保存せずにシャットダウンした 場合は設定前の状態に戻ります。

Web Setup機能の使い方の詳細については、Webメニューにある「ヘルプ」をご参照ください。 Web設定の項目は下記のファイルで管理しています。

設定ファイル:

/etc/conprosys/config.ini

出荷時設定ファイル:

/etc/conprosys/config_def.ini

Webファイルは下記ディレクトリで管理しています。

Webコンテンツディレクトリ:

[Ubuntu 14.04 (include SDK)] /var/www/html/ [軽量版rootfs]

/opt/htdocs/

8. DIP SWによる初期化設定

DIP SWの設定により、電源起動後にLAN AのIPアドレスのみを初期化、または出荷時のデフォルト設定にも どすことができます。

DIP SWの設定内容

SW設定	内容			
SW1-2のみON	電源をONにすると、IPアドレス設定を出荷時の設定で起動します。 ユーザー/パスワード、グループ設定については元の設定のまま起動します。 Web画面では、現在のIPアドレス設定、ユーザー/パスワード設定を確認できま す。			
SW1-2、SW1-3をON	電源をONにすると、各種設定を工場出荷時に初期化します。 完了するとLEDのPWRとST1が点滅します。点滅が確認できたら、2と3をOFFに 戻し、再起動してください。			

1. ビルド手順

ターゲットとなるCONPROSYS製品毎の実行環境を生成するために、必要に応じて次の内容を実施します。

- ビルドの初期設定 (configure.sh)
 ./configure.shを実行し、ベースとなるターゲットの実行環境を生成します。
 また、セルフビルド版のCONPROSYS Linux SDKも、このビルドの初期設定より実行環境を生成する ことが出来ます。
- 2 ビルドの環境設定 (source sdkenv.txt) ビルドおよびSDカード生成を実行するための環境変数の設定を行います。 ログイン後、ビルド実行前に必ずこの設定を行ってください。
- 3 bootloaderのビルド 電源ON後の起動プログラムを変更したい場合にビルドを行います。 通常行う必要はありません。
- 4 kernelのビルド

Linux kernelを変更したい場合にビルドを行います。 デフォルト設定されていないkernelの機能やドライバの追加/変更/削除したい時に行ってください。 kernelを変更しない場合は行う必要はありません。

5 サンプルドライバのビルド

サンプルドライバを変更したい場合にビルドを行います。 サンプルドライバを変更しない場合は行う必要はありません。

6 サンプルライブラリのビルド

サンプルライブラリを変更したい場合にビルドを行います。 サンプルライブラリを変更しない場合は行う必要はありません。

7 サンプルアプリケーションのビルド

サンプルアプリケーションをターゲットで実行したい場合ビルドを行います。 サンプルアプリケーションを使用しない場合や、CONPROSYS上でセルフビルドを行う場合は、ビル ドの必要はありません。

2. ターゲットのbootloaderのビルド

bootloaderのビルドは u-bootのディレクトリで行うことができます。通常は特に行うことはありませんが、 bootloaderのソースコードが変更になった時、もしくはコンパイラオプションを変更する時に実施してくだ さい。u-bootはSDカード起動用と内蔵NOR FLASH起動用の2種類があります。

1. SDカード起動用のビルド

カレント移動コマンド:

cd \${CPS_SDK_ROOTDIR}/u-boot

ビルドコマンド:

make am335x_evm

ビルドして生成されたモジュール(MLO, u-boot.img)は、次のコマンドでターゲット向けのbootディレクト リにコピーします。

コマンド:

cp -p MLO u-boot.img \${CPS_SDK_INSTALL_FULLDIR}/boot

ビルド時に生成されたオブジェクトファイル等を削除したい場合は次のコマンドを実行します。

コマンド: make distclean

2. 内蔵NOR FLASH起動用のビルド

内蔵NOR FLASHから起動する bootloaderモジュールは、SDカードで起動するbootloaderモジュールと異なります。このbootloaderモジュールは、次の方法でビルドします。

カレント移動コマンド:

cd \${CPS_SDK_ROOTDIR}/u-boot

ビルドコマンド:

make am335x_evm_spiboot

ビルドして生成されたモジュール(MLO.byteswap, u-boot.img)は、内蔵NOR FLASHインストール用の rootfs(/InstallToMTD)へコピーします。

※内蔵NOR FLASHインストール用のrootfsの作成方法は『内蔵NOR FLASH起動用インストールするため のrootfsセクションを作成 (P37)』を参照ください。

コマンド:

cp -p MLO.byteswap u-boot.img \${CPS_SDK_INSTALL_FULLDIR}/InstallerForFlash/InstallToMTD

3. ターゲットのkernelのビルド

kernelのコンフィグレーション/ビルドは kernelのディレクトリで行うことができます。 通常は特に行うことはありませんが、kernelのオプション変更やサポートされていないUSB等のデバイスド ライバを実装する時に実施してください。

カレント移動コマンド:

cd \${CPS_SDK_ROOTDIR}/kernel

コンフィグレーションコマンド:

make menuconfig

ビルドコマンド:

make uImage

ビルドして生成されたモジュール(uImage)は、次のコマンドでターゲット向けのbootディレクトリにコピーします。

コマンド:

cp -p arch/arm/boot/uImage \${CPS_SDK_INSTALL_FULLDIR}/boot/uImage.\${CPS_SDK_BOARD_NAME}

カーネルビルド後、ドライバモジュールをビルドし、次のコマンド例ではターゲット向けのrootfsディレクトリへコピーします。

ビルドコマンド:

make modules

インストールコマンド例:

sudo -E make modules_install INSTALL_MOD_PATH=\${CPS_SDK_INSTALL_FULLDIR}/\${CPS_SDK_ROOTFS}

※ドライバモジュールはrootfsディレクトリ下にある次のディレクトリにインストールされます。

lib/modules/3.2.0.CONPROSYS/

もし、他のrootfsディレクトリヘインストールする場合はINSTALL_MOD_PATHの内容を変更してください。

ビルド時に生成されたオブジェクトファイル等を削除したい場合は次のコマンドを実行します。

コマンド:

make clean

kernelのコンフィグレーション情報が壊れたり、初期に戻したい場合は次のコマンドを実行します。

コマンド:

make distclean

make \${CPS_SDK_TARGET_NAME}_defconfig

上記コマンドを実行後、コンフィグレーションおよびビルドを実行してください。

4. CPS-MxS341シリーズドライバのビル ド

SDKには次のCPS-MxS341シリーズドライバのソースコードをdriverディレクトリに付属しています。

- cps-driver (CPS-MxS341用システムドライバ)
- cpsaio (CPS-MxS341用AIOドライバ)
- cpsdio (CPS-MxS341用DIOドライバ)
- 8250_cpscom (CPS-MxS341用COMドライバ)
- cpsssi (CPS-MxS341用SSIドライバ)
- cpscnt (CPS-MxS341用CNTドライバ)
- cps_iolib (CPS-MxS341用IO汎用アクセスドライバ)

通常は特に行うことはありませんが、サンプルドライバの変更があった時に実施してください。

ドライバをビルドするにはkernelのビルド結果のソースコードが必要なため、事前にkernelのビルドを実施 してください。(『ターゲットのkernelのビルド (P63)』:参照)

各々のディレクトリ下で、下記コマンドでビルドできます。

コマンド:

make

ドライバビルド後、次のコマンド例ではターゲット向けrootfsディレクトリにコピーします。

コマンド例:

sudo -E make modules_install INSTALL_MOD_PATH=\${CPS_SDK_INSTALL_FULLDIR}/\${CPS_SDK_ROOTFS}

※ドライバモジュールはターゲットのrootfs下の次のディレクトリにインストールされます。

lib/modules/3.2.0.CONPROSYS/extra

もし、他のrootfsディレクトリヘインストールする場合はINSTALL_MOD_PATHの内容を変更してください。

注意) 付属のドライバソフトは全製品に対応していません。 対応機器を確認の上、組み込んでください。

5. ターゲットのサンプルライブラリのビル ド

SDKには下記の共有ライブラリ(shared object)のソースコードを付属しています。

- libCpsEeprom (EEPROMデータアクセスモジュールライブラリ)
- libCpsAio (CPS-MxS341用AIOライブラリ)
- libCpsDio (CPS-MxS341用DIOライブラリ)
- libCpsSsi (CPS-MxS341用SSIライブラリ)
- libCpsCnt (CPS-MxS341用CNTライブラリ)
- libconexio (CPS-MC341Q-ADSC1用920MHzモジュールライブラリ)
- SerialFunc (CPS-MC341Q-ADSC1用シリアルモジュールライブラリ)

通常は特に行うことはありませんが、サンプルライブラリの変更があった時に実施してください。 各々のディレクトリ下で、下記コマンドでビルドできます。

コマンド:

make

ライブラリビルド後、次のコマンドでターゲット向けrootfsディレクトリにコピーします。

コマンド:

sudo make install TARGET_ROOTFS=\${CPS_SDK_INSTALL_FULLDIR}/\${CPS_SDK_ROOTFS}

※ライブラリモジュールはターゲットのrootfs下の次のディレクトリにインストールされます。

usr/local/lib

もし、他のrootfsディレクトリヘインストールする場合はTARGET_ROOTFSの内容を変更してください。

ライブラリを作成する場合、makefileやソースコードを参考ください。

- 注意1) 付属のライブラリソフトは全製品に対応していません。 対応機器を確認の上、組み込んでください。
- 注意2) 付属の各々のサンプルライブラリソフトは付属のドライバソフトが必要になります。 下記の依存関係を参考に組み込んでください。

libCpsAio.so ---- cpsaio.ko ---- cps-driver.ko libCpsDio.so ---- cpsdio.ko ---- cps-driver.ko libCpsSsi.so ---- cpsssi.ko ---- cps-driver.ko libCpsCnt.so ---- cpscnt.ko ---- cps-driver.ko

6. ターゲットのサンプルアプリケーション のビルド

SDKにはサンプルのアプリケーションソースコードを下記のディレクトリに付属しています。

\${CPS_SDK_ROOTDIR}/application/sample/

各ターゲットに応じたサンプルアプリケーションがあります。(『サンプルプログラム対応表』参照)ターゲットの動作評価やアプリケーションの参考に使用してください。サンプルプログラムをビルドするには、各々のディレクトリでmakeコマンドを実行すると実行形式のファイルが生成されます。

例:タイマーのサンプルプログラム

cd \${CPS_SDK_ROOTDIR}/application/sample/timer

make

サンプルプログラム対応表

サンプルプログラム	ディレクトリ application/sample/	CPS-MC341-ADSCx CPS-MC341G-ADSC1	CPS-MC341Q-ADSC1	CPS-MC341-Ax	CPS-MC341-DSx	CPS-MC341-DS1x	CPS-MCS341-DSx CPS-MGS341-DS1 CPS-MCS341G-DS1	CPS-MCS341Q-DS1
TCP/IP サーバー/クライアント	socket	0	0	\bigcirc	\bigcirc	\bigcirc	0	0
タイマー	timer	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0
EEPROMデータ読み出し	getEepromData	0	0	\bigcirc	\bigcirc	\bigcirc	0	0
CAN送信/受信テスト	can			\triangle	\bigtriangleup			
RS-485通信(コンパクトタイプ用)	RS485	0	0	\triangle	\bigcirc	\bigcirc		
DI/DO, AI制御(多機能モデル用)	mc341_io	0	\bigcirc					
AI/AO制御(コンパクトタイプ用)	mc341-ax_aio			\bigcirc				
AI/AO制御(スタックタイプ用)	mcs341_aio						0	0
DI/DO制御(コンパクトタイプ用)	spitest	0	0		0	\bigcirc		
http制御(DIO) (コンパクトタイプ用)	http_post	0	0		0	0		
DI/DO制御(スタックタイプ用)	mcs341_dio						0	0
SSI制御(スタックタイプ用)	mcs341_ssi						0	0
COM制御(スタックタイプ用)	mcs341_com						0	0
CNT制御(スタックタイプ用)	mcs341_cnt						0	0
System制御(スタックタイプ用)	mcs341_system						0	0
iolib制御(スタックタイプ用)	mcs341_iolib						0	0
920MHz送信/受信テスト	conexio_CMM920		0					

○:対応 △:一部の機種で対応 空欄:非対応

これらのサンプルアプリケーションは全てのCONPROSYS製品に対応していません。

対応機器であってもデバイスポート等の違いにより、動作しないプログラムもありますのでプログラムを確認の上、ビルドしテストしてください。

また、必要なドライバ/ライブラリがあるサンプルソフトのビルドについて、事前にそれらのドライバ/ライ ブラリをビルドしてからサンプルアプリケーションのビルドをしてください。

デバイスポートについては、『デバイスI/F (P77)』を参照ください。

アプリケーションソフトを作成する場合、これらのmakefileやソースコードを参考ください。

7. 軽量版rootfsのビルド

本SDKは、内蔵NOR FLASHなど小容量の起動デバイス用にコンパクトに纏まった軽量版linuxのrootfsのソ ースコードを添付しています。そのrootfsの内容は次のものになります。

busybox, glibc, dropbear (軽量版SSHサーバー/クライアント), iptables, sudo

rootfsのディレクトリ下でビルドすることができます。

カレント移動コマンド:

cd \${CPS_SDK_ROOTDIR}/rootfs/light

ビルドコマンド:

make

次のコマンドでrootfsのファイルシステムをターゲットディレクトリ下rootfsに作成できます。

コマンド:

make install

また、Makefile内の環境変数EXPORTDIRに指定したディレクトリを与えることによって、そのディレクトリ 下に構築することも可能です。

コマンド例: 内蔵NOR FLASH起動用ターゲットディレクトリ下にrootfsを構築したい場合 make install EXPORTDIR=\${CPS_SDK_ROOTDIR}/ramdisk/export

8. 内蔵NOR FLASH起動用ramdisk.xzの ビルド

内蔵NOR FLASHのrootfsはramdisk.xzというファイルに圧縮されて格納されています。

軽量版rootfsのビルドが正常に完了していると、そのrootfsより次のコマンドでramdisk.xzを生成できます。

カレント移動コマンド:

cd \${CPS_SDK_ROOTDIR}/ramdisk

ビルドコマンド:

make

Appendix

1. ブロック図

CPS-Mx341-ADSCxシリーズブロック図 (斜字はオプション)

CPS-Mx341G-ADSC1(日本国内モデル)ブロック図

CPS-Mx341G-ADSC1(グローバルモデル)ブロック図

CPS-MC341Q-ADSC1ブロック図

CPS-MG341G5-ADSC1ブロック図

CPS-MC341-Axシリーズブロック図 (斜字はオプション)

CPS-MC341-DSxシリーズブロック図 (斜字はオプション)

CPS-MC341-DS1xシリーズブロック図 (斜字はオプション)

CPS-MxS341-DSxシリーズブロック図 (斜字はオプション)

CPS-MCS341G-DS1シリーズブロック図 (斜字はオプション)

CPS-MCS341Q-DS1シリーズブロック図 (斜字はオプション)

CPS-MxS341G5-DS1シリーズブロック図 (斜字はオプション)

2. デバイスI/F

CONPROSYS特有のデバイスI/FはLinux上で次の表に示すようにアクセスすることができます。 機器によってポートが違うことがありますので注意ください。

UART制御デバイス

モデル	/dev/tty01	/dev/ttyO2	/dev/ttyO3	/dev/ttyO4	/dev/tty05
CPS-MC341-ADSC1	RS-422A/485 (COM A)	-	-	-	RS-232C (COM B)
CPS-MC341-ADSC2	RS-422A/485 (COM A)	-	RS-422A/485 (COM C)	-	RS-232C (COM B)
CPS-MC341G-ADSC1 CPS-MG341G5-ADSC1	RS-422A/485 (COM A)	-	-	-	RS-232C (COM B)
CPS-MC341Q-ADSC1	RS-422A/485 (COM A)	-	920MHz module	-	RS-232C (COM B)
CPS-MC341-A1	-	-	-	-	-
CPS-MC341-DS1	-	-	-	-	RS-422A/485 (COM A)
CPS-MC341-DS2	(CAN用)※1	-	-	-	RS-422A/485 (COM A)
CPS-MC341-DS11	RS-232C (COM A)	-	-	-	RS-422A/485 (COM B)
CPS-MCS341-DS1 CPS-MGS341-DS1	-	-	-	-	RS-232C
CPS-MCS341G-DS1 CPS-MCS341G5-DS1 CPS-MGS341G5-DS1	-	-	-	-	RS-232C
CPS-MCS341Q-DS1	-	-	920MHz module	-	RS-232C

※1 CAN用ポートとしてリザーブされています。制御はNetworkで行ってください。

SPI制御デバイス

モデル	/dev/spidev2.0	/dev/spidev2.1	/dev/spidev2.2
CPS-MC341-ADSCx	AI (ADC / CLK=6MHz)	DIO (FPGA / CLK=24MHz)	-
CPS-MC341G-ADSC1			
CPS-MG341G5-ADSC1			
CPS-MC341Q-ADSC1			
CPS-MC341-A1	AI (ADC / CLK=6MHz)	AO (DAC / CLK=20MHz)	Potentiometers
			(CLK=25MHz)
CPS-MC341-DSx	DIO (FPGA / CLK=24MHz)	-	-
CPS-MC341-DS11	DIO (FPGA / CLK=24MHz)	-	-
CPS-MCS341-DS1	-	-	-
CPS-MGS341-DS1			
CPS-MCS341G-DS1			
CPS-MCS341G5-DS1			
CPS-MGS341G5-DS1			
CPS-MCS341Q-DS1			

カッコ内は接続されるデバイスとSPI制御MAXクロック値

GPIO制御デバイス (LED系)

モデル	GPIO 26	GPIO 27	GPIO 67	GPIO 128	GPIO 129
CPS-MC341-ADSCx CPS-MC341G-ADSC1 CPS-MC341Q-ADSC1	ST1 Green (Out)	ST2 Red (Out)	Power (Out)	-	-
CPS-MG341G5-ADSC1	ST1 Green (Out)	ST2 Red (Out)	Power (Out)	LTE Green (Out)	LTE Red (Out)
CPS-MC341-A1	ST1 Green (Out)	ST2 Red (Out)	Power (Out)	-	-
CPS-MC341-DSx	ST1 Green (Out)	ST2 Red (Out)	Power (Out)	-	-
CPS-MC341-DS11	ST1 Green (Out)	ST2 Red (Out)	Power (Out)	-	-
CPS-MCS341-DS1 CPS-MGS341-DS1 CPS-MCS341G-DS1 CPS-MCS341Q-DS1	-	-	-	-	-
CPS-MCS341G5-DS1 CPS-MGS341G5-DS1	-	-	-	LTE Green (Out)	LTE Red (Out)

GPIO制御デバイス (Switch系)

モデル	GPIO 32	GPIO 33	GPIO 34	GPIO 35	GPIO 87
CPS-MC341-ADSCx CPS-MC341G-ADSC1 CPS-MG341G5-ADSC1 CPS-MC341Q-ADSC1	DIP SW1-2 (In)	DIP SW1-3 (In)	DIP SW1-4 (In)	Shutdown SW (In)	-
CPS-MC341-A1	DIP SW1-2 (In)	DIP SW1-3 (In)	DIP SW1-4 (In)	Shutdown SW (In)	-
CPS-MC341-DSx	DIP SW1-2 (In)	DIP SW1-3 (In)	DIP SW1-4 (In)	Shutdown SW (In)	-
CPS-MC341-DS11	DIP SW1-2 (In)	DIP SW1-3 (In)	DIP SW1-4 (In)	Shutdown SW (In)	-
CPS-MCS341-DS1 CPS-MGS341-DS1 CPS-MCS341G-DS1 CPS-MCS341G5-DS1 CPS-MGS341G5-DS1 CPS-MCS341Q-DS1	-	-	-	-	Shutdown SW (In)

GPIO制御デバイス (Input Switch制御系)

モデル	GPIO 39	GPIO 44	GPIO 45	GPIO 46	GPIO 47	GPIO 100
CPS-MC341-ADSCx CPS-MC341G-ADSC1 CPS-MG341G5-ADSC1 CPS-MC341Q-ADSC1	-	-	-	-	-	-
CPS-MC341-A1	DAC LDACB (Out)	AI switches A0 (Out)	AI switches A1 (Out)	AI switches A2 (Out)	AO Switch (Out)	Potentiometers \overline{CS} (Out)
CPS-MC341-DSx	-	-	-	-	-	-
CPS-MC341-DS11	-	-	-		-	-
CPS-MCS341-DS1 CPS-MGS341-DS1 CPS-MCS341G-DS1	-	-	-		-	-

モデル	GPIO 39	GPIO 44	GPIO 45	GPIO 46	GPIO 47	GPIO 100
CPS-MCS341G5-DS1						
CPS-MGS341G5-DS1						
CPS-MCS341Q-DS1						

GPIO制御デバイス (Board制御系)

モデル	GPIO 22	GPIO 23	GPIO 36	GPIO 37	GPIO 105
CPS-MC341-ADSC1	-	-	-	-	Power RESET (Out)
CPS-MC341-ADSC2	-	-	RS485 Power (Out)	-	Power RESET (Out)
CPS-MC341G-ADSC1	-	LDO_SHUTDOWN (Out)	3G Power (Out)	3G Reset (Out)	Power RESET (Out)
CPS-MG341G5-ADSC1	PWR_ON_N_3V3 (Out)	PWRKEY (Out)	LTE Power (Out)	LTE Reset (Out)	Power RESET (Out)
CPS-MC341Q-ADSC1	-	-	920M Power (Out)	920M Reset (Out)	Power RESET (Out)
CPS-MC341-A1	-	-	-	-	Power RESET (Out)
CPS-MC341-DSx	-	-	-	-	Power RESET (Out)
CPS-MC341-DS11	-	-	-	-	Power RESET (Out)
CPS-MCS341-DS1 CPS-MGS341-DS1 CPS-MCS341G-DS1 CPS-MCS341G5-DS1 CPS-MGS341G5-DS1 CPS-MCS341Q-DS1	-	-	-	-	Power RESET (Out)

カッコ内は入出力方向を示す

USB-Serial制御デバイス

モデル	/dev/ttyUSB0	/dev/ttyUSB1	/dev/ttyUSB2	/dev/ttyUSB3	/dev/ttyUSB3
CPS-MC341-ADSCx CPS-MC341Q-ADSC1	Optional Serial Device				
CPS-MC341G-ADSC1 (日本国内モデル)	Sierra USB modem	Sierra USB modem	Sierra USB modem	Sierra USB modem	Optional Serial device
CPS-MC341G-ADSC1 (グローバルモデル)	Optional Serial device				
CPS-MG341G5-ADSC1	Quectel USB modem	Quectel USB modem	Quectel USB modem	Quectel USB modem	Optional Serial device
CPS-MC341-A1					
CPS-MC341-DSx					
CPS-MC341-DS11	Optional Serial device				
CPS-MCS341-DS1 CPS-MGS341-DS1 CPS-MCS341G-DS1 CPS-MCS341Q-DS1	Optional Serial device				
CPS-MCS341G5-DS1 CPS-MGS341G5-DS1	Quectel USB modem	Quectel USB modem	Quectel USB modem	Quectel USB modem	Optional Serial device

コンパクトタイプ ADC / DAC / FPGA(DIO) 使用デバイス

モデル	デバイス	メーカー	デバイス型番	制御ポート
CPS-MC341-ADSC1	ADC	Analog Devices	ADC7327	/dev/spidev2.0
CPS-MC341-ADSC2 CPS-MC341G-ADSC1 CPS-MC341Q-ADSC1 CPS-MG341G5-ADSC1	FPGA (DIO)	Lattice Semiconductor	LCMXO2-640HC- 4TG100l	/dev/spidev2.1
CPS-MC341-A1	ADC	Texas Instruments	ADS8326IDGKR	/dev/spidev2.0
	AI Multiplexers	Iltiplexers Analog Devices		A0: GPIO 44 A1: GPIO 45 A2: GPIO 46
	DAC	Texas Instruments	DAC161S055CISQ	/dev/spidev2.1 LDACB: GPIO 39
	AO Switch	Toshiba	SSM3J135TU	Gate: GPIO 47
	Potentiometers	Analog Devices	AD5206BRUZ10	/dev/spidev2.2 $\overline{\text{CS}}$: GPIO 100
CPS-MC341-DSx	FPGA (DIO)	Lattice Semiconductor	LCMXO2-640HC- 4TG100l	/dev/spidev2.0
CPS-MC341-DS11	FPGA (DIO)	Lattice Semiconductor	LCMXO2-640HC- 4TG100I	/dev/spidev2.0

AIOのデバイス制御詳細に関しては、上記の情報より各デバイスメーカーのデータシートを入手し参照ください。DIOのデバイス制御(FPGA)に関しては、『FPGA I/Oマップ (P82)』の項を参照ください。

スタックタイプ FPGA使用デバイス

モデル	デバイス	メーカー	デバイス型番	制御ポート
CPS-MCS341-DS1	FPGA	Lattice	LCMXO2-7000HC-	GPMC
CPS-MGS341-DS1		Semiconductor	4FTG256I	
CPS-MCS341G-DS1				
CPS-MCS341Q-DS1				
CPS-MCS341G5-DS1				
CPS-MGS341G5-DS1				

デバイス制御(FPGA)に関しては、『FPGA I/Oマップ (P82)』の項を参照ください。

スタックタイプCOMデバイス

モデル	/dev/ttyCPS0	/dev/ttyCPS1	/dev/ttyCPS2	/dev/ttyCPS3	••••	/dev/ttyCPS62	/dev/ttyCPS63
CPS-COM-1PC	RS-232C	-	RS-232C	-		RS-232C	-
CPS-COM-2PC	RS-232C	RS-232C	RS-232C	RS-232C		RS-232C	RS-232C
CPS-COM-1PD	RS-422A/485	-	RS-422A/485	-		RS-422A/485	-
CPS-COM-2PD	RS-422A/485	RS-422A/485	RS-422A/485	RS-422A/485		RS-422A/485	RS-422A/485

スタックタイプAIO 制御デバイス

モデル	/dev/cpsaio0	/dev/cpsaio1	 /dev/cpsaio30	/dev/cpsaio31
CPS-AI-1608LI/ CPS-AI-1608ALI	AI	AI	 AI	AI
CPS-AO-1604LI CPS-AO-1604ALI	AO	AO	 AO	AO

モデル	/dev/cpsdio0	/dev/cpsdio1	 /dev/cpsdio30	/dev/cpsdio31
CPS-DIO-0808L/ CPS-DIO-0808BL	DIO	DIO	 DIO	DIO
CPS-DI-16L/ CPS-DI-16RL	DI	DI	 DI	DI
CPS-DO-16L/ CPS-DO-16RL/ CPS-RRY-4PCC	DO	DO	 DO	DO

スタックタイプDIO 制御デバイス

スタックタイプSSI 制御デバイス

モデル	/dev/cpsssi0	/dev/cpsssi1	 /dev/cpsssi30	/dev/cpsssi31
CPS-SSI-4P/	SSI	SSI	 SSI	SSI
CPS-SSI-4C				

スタックタイプFPGA制御デバイス

モデル	/dev/cps-iolib
CPS-MxS341-DSx	GPMC
CPS-MCS341G-DS1	
CPS-MCS341Q-DS1	
CPS-MCS341G5-DS1	
CPS-MGS341G5-DS1	

Networkデバイス

Network Category	eth0	eth1	eth2	can0	can1	wwan0	ppp0
1 LAN(Hub Mode) Type	LAN A/B	-	-	-	-	-	-
2 LAN Type	LAN A	LAN B	-	-	-	-	-
CAN搭載モデル 1 LAN(Hub Mode) Type	LAN A/B	-	-	CAN※	CAN※	-	-
CAN搭載モデル 2 LAN(Hub Mode) Type	LAN A	LAN B	-	CAN※	CAN※	-	-
3G搭載モデル(日本国内モデル) 1 LAN(Hub Mode) Type	LAN A/B	-	-	-	-	3G	-
3G搭載モデル(日本国内モデル) 2 LAN Type	LAN A	LAN B	-	-	-	3G	-
3G搭載グローバルモデル 1 LAN(Hub Mode) Type	LAN A/B	3G	-	-	-	-	-
3G搭載グローバルモデル 2 LAN Type	LAN A	LAN B	3G	-	-	-	-
LTE搭載モデル 1 LAN Type	LAN A/B	-	-	-	-	-	LTE
LTE搭載モデル 2 LAN Type	LAN A	LAN B	-	-	-	-	LTE

※CAN搭載モデルについてCAN用のドライバ (d_can_platform)をロードして制御してください。

3. FPGA I/Oマップ

1. [コンパクトタイプ CPS-Mx341-ADSCx / DSx シリーズ]

メーカー	:	Lattice Semiconductor
デバイス型番	:	LCMXO2-640HC-4TG100
インターフェイス	:	SPI

SPI信号タイミング

MISO : SCLKの立ち上がりでスレーブ信号を出力、 SCLKの立下りでマスタが信号をラッチ

SPI信号フォーマット

Register Page	Addres	s	R/W	Access Type	Dummy	Data
4bit	8bit		1bit	1bit	2bit	16bit
• R/W	: 0 = Read.	1 = 1	Write			

• Access Type : 0 = Byte Access, 1 = Word Access

• Dummy : 常に 0

Byteアクセス時は、 データを下詰めで16bitデータにして送受信を行います。

例: Page = 0h、Address=12hに00AAhをWrite する場合 0x0 12 C 00AA

Products Category

Products Category	Function	Register Page	適用機器
01h	デジタル入出力部	Oh	CPS-MC341-ADSCx, CPS-MC341-DSx
02h	アナログ入力部	1h	CPS-MC341-ADSCx
03h	カウンタ部	2h	CPS-MC341-ADSCx

Address	Read/Write種別	内容
00h – 01h	R	システム予約エリア
02h – 03h	R	システム予約エリア
04h – 0Ch	R	未使用
0Eh – 0Fh	R	システム予約エリア
10h – 11h	R	デジタル入力ポート
12h – 13h	R/W	デジタル出力ポート
14h – 17h	R	未使用
18h – 19h	R/W	デジタルフィルタ設定時間
1Ah – 1Fh	R	未使用
1Ch – 1Dh	R/W	内蔵電源 ON/OFF※
1Eh – 1Fh	R	未使用
20h – 21h	R/W	システム予約エリア
22h – 23h	R	未使用
24h – 25h	R/W	システム予約エリア
26h - FFh	R	未使用

デジタル入出力部ポートマップ (Page Oh)

※ CPS-MC341-ADSC1-931のみ対応

アナログ入力部ポートマップ (Page 1h)

Address	Read/Write種別	内容
00h – 01h	R	システム予約エリア
02h – 03h	R	システム予約エリア
04h – 27h	R	未使用
28h – 29h	R/W	アナログ入力部
2Ah - FFh	R	未使用

Address	Read/Write種別	内容
00h – 01h	R	システム予約エリア
02h – 03h	R	システム予約エリア
04h – 0Fh	R	未使用
10h – 11h	R/W	Direct Counter Data下位 (R) / Read Channel Select (W)
12h – 13h	R/W	Direct Counter Data上位(R)/ Direct Counter Latch Select(W)
14h – 15h	R/W	Counter Select Enable Status
16h – 17h	R	未使用
18h – 19h	R/W	Command Select
1Ah – 1Bh	R	未使用
1Ch – 1Dh	R/W	Counter Input / Output data 下位
1Eh – 1Fh	R/W	Counter Input / Output data 上位
20h – 21h	W	システム予約エリア
22h – 23h	W	システム予約エリア
24h – 25h	R/W	システム予約エリア
26h – 27h	R/W	システム予約エリア
2Ah - FFh	R	未使用

カウンタ入出力部ポートマップ (Page 2h)

デジタル入力ポート (Page 0h / Address 10h - 11h) R

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	DI7	DI6	DI5	DI4	DI3	DI2	DI1	DI0

このポートは、デジタル入力端子の値を取得します。デジタルフィルタを設定している場合は、フィルタ通 過後の値が取得されます。

※CPS-MC341-ADSCxシリーズはDI0 - DI3のみ有効です。

デジタル出力ポート (Page Oh / Address 12h -13h) R/W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D05	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	D07	D06	D05	D04	D03	D02	D01	D00

このポートは、デジタル出力端子の値を設定、または設定値を取得します。

※CPS-MC341-ADSCxシリーズはDO0 - DO1のみ有効です。

デジタルフィルタ設定時間 (Page 0h / Address 18h – 19h) R/W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	ST4	ST3	ST2	ST1	ST0	0	0	0	0	0	0	0	0

このポートは、デジタル入力端子に適用するデジタルフィルタの値を設定、または設定値を取得します。設 定値は全入力端子に適用されます。設定値は[デジタルフィルタ設定項目]を参照してください。

デジタルフィルタ設定項目

設定項目	名称	意味	設定項目	初期値
ST4~0	デジタルフィルタ設定	デジタルフィルタの時	0: フィルタ機能未使用	0
	時間	間を設定します。	1: 0.25µsec	[フィルタ機能未使用]
			2: 0.5µsec	
			3: 1µsec	
			4: 2µsec	
			5: 4µsec	
			6: 8µsec	
			7: 16µsec	
			8: 32µsec	
			9: 64µsec	
			10: 128µsec	
			11: 256µsec	
			12: 512µsec	
			13: 1.024msec	
			14: 2.048msec	
			15: 4.096msec	
			16: 8.192msec	
			17: 16.384msec	
			18: 32.768msec	
			19: 65.536msec	
			20: 131.072msec	
			21~31: Reserve	

内蔵電源 ON/OFF 設定ポート (Page 0h / Address 1Ch - 1Dh) R/W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	PWEn

このポートは、デジタル入力ポート用の内蔵電源の有効(ON)/無効(OFF)を設定します。

このポートをReadすることで、設定状態を確認することが出来ます。設定値は[表 42. 内蔵電源 ON/OFF 設定]を参照してください。

内蔵電源 ON/OFF設定

設定項目	名称	意味	設定項目	初期値
PWEn	内蔵電源有効	内容電源を有効(ON)にします。	0: 無効(OFF) 1: 有効(ON)	0 [無効]

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	03	D2	D1	00
0	0	0	0	0	0	0	0	0	0	0	0	0	0	AT1	AT0

このポートは、アナログ入力チャンネルの値を取得します。チャンネル間絶縁機能が必要な場合は、両方の スイッチを同時にONしないでください。同時にONするとチャンネル間絶縁の機能が失われます。

デジタル入力ポート (Page 0h / Address 10h - 11h) R

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
10h	D15	D14	D13	D12	D11	D10	D09	D08	D07	D06	D05	D04	D03	D02	D01	D00
12h	0	0	0	0	0	0	0	0	D23	D22	D21	D20	D19	D18	D17	D16

このポートは、ラッチされたカウンタデータを読むことができます。

読むデータは『カウンタ読み出しチャンネル設定ポート(Page 2h / Address 10h) W』で設定します。

カウンタ読み出しチャンネル設定ポート (Page 2h / Address 10h) W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Sel0

このポートは、カウンタデータ読み出しポートで読み出すチャンネルを選択します。

カウンタデータの読み出しは、『カウンタデータ読み出しポート(Page 2h / Address 10h - 13h) R』で行 います。

カウンタ読み出し設定

設定項目	名称	意味	設定項目	初期値
Sel0	カウンタ読み出しチャ ンネル	カウンタデータ読み出しポートか ら読み出すチェンネルを設定しま す。	0: Channel 0 1: Channel 1	0 [Channel 0]

カウンタデータラッチ設定ポート (Page 2h / Address 12h) W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ch01	Ch00

このポートに[1]を書き込むことで、カウンタデータがラッチされます。カウンタデータ読み出しポートからは、ここでラッチしたカウント値が読み出されます。

|--|

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ch01	Ch00

このポートは、カウンタ有効チャンネルの設定および設定状態を読み出します。

カウンタ有効チャンネル設定ポート (Page 2h / Address 14h) W

D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0			Cn	nd06 -	00		

このポートは、次のコマンドコードを実行するためのオペレーションコマンドポートです。

コマンドコード一覧:

- 08h: Ch0カウンタモード (Write)
- 09h: ch1カウンタモード (Write)
- 18h: Ch0比較レジスタ0 (Write)
- 19h: Ch1比較レジスタ0 (Write)
- 20h: Ch0比較レジスタ1 (Write)
- 21h: Ch1比較レジスタ1 (Write)
- 38h: カウント一致ステータス確認/クリア (Read/Write)
- 3Ah: キャリーステータス確認/クリア(Read/Write)
- 3Dh: ソフトゼロクリア (Write)

Writeコマンド使用時にはデータアドレスポート(Page 2h / 1Ch – 1Fh)にデータを設定します。Readコマ ンド使用時にはデータアドレスポート(Page 2h / 1Ch – 1Fh)からデータを読み出します。コマンドポート を制御した後、データアドレスポートも制御してください。各コマンドコードに対するデータアドレスポー トのフォーマットは、『カウンタ入出力部ポートマップ(Page 2h)』~『内蔵電源 ON/OFF 設定ポート(Page Oh / Address 1Ch – 1Dh) R/W』を参照してください。

Ch0 / Ch1カウンタモード (カウンタコマンドコード: 08h / 09h) W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1Eh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

カウンタの動作モードの設定を行います。設定は入力チャンネル毎に行います。

Ch0 / Ch1比較レジスタ0 (カウンタコマンドコード:18h / 19h) W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch								Data0	0 - 15							
1Eh	0	0	0	0	0	0	0	0				Data1	6 - 25			

Ch0 - Ch1のカウント値比較レジスタ0にデータを設定します。

Ch0 / Ch1比較レジスタ1 (カウンタコマンドコード: 20h / 21h) W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch								Data0	0 - 15							
1Eh	0	0	0	0	0	0	0	0				Data1	6 - 25			

Ch0 - Ch1のカウント値比較レジスタ1にデータを設定します。

カウントー致ステータス確認 / クリア (カウンタコマンドコード:38h) R/W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch	0	0	0	0	0	0	Cmp1 _Ch1	Cmp1 _Ch0	0	0	0	0	0	0	Cmp0 _Ch1	Cmp0 _Ch0
1Eh	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Read時、条件が成立したビットが 1になります。

Write時、対応ビットに1をセットすることでリセットします。

キャリーステータス確認 / クリア (カウンタコマンドコード: 3Ah) R/W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Carry	Carry
															Ch1	Ch0

Read時、条件が成立したビットが 1になります。

Write時、対応ビットに1をセットすることでリセットします。

ソフトゼロクリア (3Dh) W

Addr	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1Ch	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ch1	Ch0

Write時、対応ビットに1をセットすることでリセットします。

2. [スタックタイプ CPS-MxS341-DSxシリーズ]

メーカー	:	Lattice Semiconductor

- デバイス型番: LCMXO2-7000HC-4FTG256I
- インターフェイス : GPMC

ポートマップ

Address	Read/Write種別	内容
0000h – 0001h	R	システム予約エリア
0002h	R	ロータリースイッチ
0003h	R	DIP SW
0004h	R	デバイス接続台数
0005h	R/W	システム予約エリア
0006h – 0007h	R/W	LED制御
0008h – 000Bh	R/W	システム予約エリア
000Ch – 000Dh	R/W	システム予約エリア
000Eh – 000Fh	R	未使用
0010h – 005Fh	R	スタックデバイス情報
0060h – 0063h	R/W	DIO制御レジスタ
0064h – 0065h	R/W	UART制御レジスタ
0066h – 00FFh	R/W	未使用
0100h – 01FFh	R	デバイス0
0200h – 02FFh	R	デバイス1
:		:
:		:
1F00h – 1FFFh	R	デバイス30
2000h – 20FFh	R	デバイス31

4. 内蔵NOR FLASHメモリマップ

CONPROSYSは32Mbyteの内蔵NOR FLASHメモリを搭載しています。

メモリの配置と『内蔵NOR FLASHインストール用rootfsセクションへのコピー (P39)』の項で示すイン ストールファイルの関係を次に表します。

NOR FLASHメモリマップ

Address	dev	メモリサイズ	用途	インストールファイル
0000000h – 001FFFFh	mtd0	131,072 byte	マスターブート用	MLO.byteswap
0020000h – 009FFFFh	mtd1	524,288 byte	u-boot用	u-boot.img
00A0000h – 00DFFFFh	mtd2	262,144 byte	u-bootオプション用	※1
00E0000h – 043FFFFh	mtd3	3,538,944 byte	カーネル用	uImage
0440000h - 0DBFFFFh	mtd4	9,961,472 byte	ramdisk用	ramdisk.xz
0DC0000h - 1FFFFFF	mtd5	19,136,512 byte	アプリケーション領域	mtd5.tgz%2

※1 本SDKのデフォルトのインストールツールは処理をコメントアウトしています。

※2 mtd5へは、ファイルを展開した状態でインストールします。

5. コンパクトタイプシリーズ LED/DIP Switch/Switch制御

コンパクトタイプのLEDは次の表に示すものをGPIOポートで制御することができます。

コンパクトタイプLED制御

LED種別	制御デバイス	ポートNo	ポート属性	制御方法 (linux shell)
Power	GPIO	67	Out	On : /usr/local/bin/gpio_out.sh 67 0 Off : /usr/local/bin/gpio_out.sh 67 1
ST1	GPIO	26	Out	On : /usr/local/bin/gpio_out.sh 26 0 Off : /usr/local/bin/gpio_out.sh 26 1
ST2	GPIO	27	Out	On : /usr/local/bin/gpio_out.sh 27 0 Off : /usr/local/bin/gpio_out.sh 27 1

コンパクトタイプのSwitchは次の表に示すものをGPIOポートから読み出すことができます。

コンパクトタイプSwitch制御

LED種別	制御デバイス	ポートNo	ポート属性	制御方法 (linux shell)
DIP SW1-2	GPIO	32	In	/usr/local/bin/gpio_in.sh 32 On=0, Off=1
DIP SW1-3	GPIO	33	In	/usr/local/bin/gpio_in.sh 33 On=0, Off=1
DIP SW1-4	GPIO	34	In	/usr/local/bin/gpio_in.sh 34 On=0, Off=1
Shutdown SW	GPIO	35	In	/usr/local/bin/gpio_in.sh 35 Press(On)=0, Release(Off)=1

6. スタックタイプシリーズ DIO/LED/DIP Switch/Switch制御

スタックタイプのDIO / LED / DIP Switch / Switch は、CONPROSYS上の下記ディレクトリ下にあるファ イルによって制御することができます。

/sys/bus/platform/drivers/cps-driver

各ファイルの機能と使用方法を『**スタックタイプDIO / LED / DIP Switch / Switch制御 (P93)**』に示 します。

スタックタイプDIO / LED / DIP Switch / Switch制御

ファイル	制御デバイス	機能
	使用	方法
dio0 direction	DIO	DI/DOの切換設定
	b0(DIO0) - b3(DIO3)を0ならDI、1なり	ら DOに 設定
	設定例:	
	DIO0とDIO1をDI、DIO2とDIO3をDO	Dに設定
	$b3:1, b2:1, b1:0, b0:0 \rightarrow cH$	
	<command/>	
	echo $0xc > /svs/bus/platform/dr$	ivers/cps-driver/dio0_direction
	設定読出例:	, , , , , , , , <u>, , , , , , , , , , , </u>
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/dio0 direction
dio0 do value	DO	DO値設定
	DO0とDO2を1、DO1とDO3を0に設定	2
	$b_{3:0}, b_{2:1}, b_{1:0}, b_{0:1} \rightarrow 5H$	-
	<command/>	
	echo $0x5 > /svs/bus/platform/dr$	ivers/cps-driver/dio0_do_value
	設定読出例:	
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/dio0 do value
dio0 di value	DI	DI值読出
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/dio0 di value
id	$\Box - \varphi \cup - \chi - \chi - \chi$	ロータリースイッチ値読出
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/id
led_status1	Status1 LED	Status1 LFD On/Off設定
	設定例、	
	Status1 ED をOn	
	<command/>	
	echo 1 > /svs/bus/platform/drive	ers/cps-driver/led_status1
	設定読出例:	
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/led_status1
led status2	Status2 LED	Status2 LED On/Off設定
	設定例:	
	Status2 LED をOff	
	<command/>	
	echo 0 > /svs/bus/platform/drive	ers/cps-driver/led_status2
	設定読出例:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	<command/>	
	cat /svs/bus/platform/drivers/cp	s-driver/led_status2
led error	Error LED	Error LED On/Off設定
	設定例:	
	Error LED をOn	
	<command/>	
	echo 1 > /sys/bus/platform/drive	ers/cps-driver/led error
	設定読出例:	, , , _
	<command/>	
	cat /sys/bus/platform/drivers/cp	s-driver/ switch
switch	DIP Switch	DIP Switch值読出
	<command/>	1
	cat /sys/bus/platform/drivers/cp	s-driver/switch

スタックタイプのLED/Switch等は、本SDKのサンプルアプリケーションにあるCPS-MxS341-DSxシリーズ 用のiolib制御サンプルプログラムを使ってアクセスすることもできます。

スタックタイプのLEDはGPMCポートから、次の表に示すFPGAのI/Oマップアドレスより制御することができます。

スタックタイプLED制御

レジスタ	D7	D6	D5	D4	D3	D2	D1	D0
0006h	-	-	-	-	ERR	ST2	ST1	Power
					R/W	R/W	R/W	R/W
					On: 1 Off: 0	On: 1 Off: 0	On: 1 Off: 0	On: 1 Off: 0

コマンド例: Power, ST1, ST2を点灯させる

gpmc_testd -w1 0006 06

コマンド例: LEDの状態を取得する

gpmc_testd -r1 0006

スタックタイプのSwitchはGPMCポートから、次の表に示すFPGAのI/Oマップアドレスより読み出すことができます。

スタックタイプSwitch制御

レジスタ	D7	D6	D5	D4	D3	D2	D1	D0
0002h		ロータリーズ	スイッチ H			ロータリー	スイッチ L	
0003h	DIP SW1-4	DIP SW1-3	DIP SW1-2	DIP SW1-1	-	-	-	-
	On: 1 Off: 0	On: 1 Off: 0	On: 1 Off: 0	On: 1 Off: 0	-	-	-	-

コマンド例: ロータリースイッチの状態を取得する

gpmc_testd -r1 0002

7. オプションボード制御

下記モデルにおいては、3G/LTE/920Hz通信のオプションボードが本体に内蔵されています。

【コンパクトタイプ M2Mコントローラシリーズ】

CPS-MC341G-ADSC1シリーズマルチI/O + 3G(日本国内 / グローバル)モデルCPS-MC341Q-ADSC1マルチI/O + 920MHz帯通信モデル

【コンパクトタイプ M2M Gatewayシリーズ】

CPS-MG341G-ADSC1シリーズ マルチI/O + 3G(日本国内)モデル CPS-MG341G5-ADSC1 マルチI/O + LTEモデル

【スタックタイプ M2Mコントローラシリーズ】

CPS-MCS341G-DS1	CPUモジュール + 3G(日本国内)モデル
CPS-MCS341G5-DS1	CPUモジュール + LTEモデル
CPS-MCS341Q-DS1	CPUモジュール + 920MHz帯通信モデル

【スタックタイプ M2M Gatewayシリーズ】

CPS-MGS341G5-DS1 CPUモジュール + LTEモデル

これらのモデルは、オプションボードの電源を制御することが出来ます。

オプションボード制御

機能	制御方法 (linux shell)
オプションボード電源On※	/usr/local/cps-board/PowerOnOptionBoard.sh
オプションボード電源Off※	/usr/local/cps-board/PowerOffOptionBoard.sh
オプションボード検知	/usr/local/cps-board/DetectOptionBoard.sh [終了ステータス] 0: オプションボード起動中 1: オプションボード未検知

※ root権限が必要です。コンソールで実行する場合はsudoコマンドを用いて実行してください。

3G/LTEモデルは、接続/切断、SIMチェック、RSSI取得等を制御することが出来ます。

3G/LTE制御

機能	制御方法 (linux shell)
接続 ^{※1}	/usr/local/cps-board/mobile/start_mobile.sh
切断 ^{※1}	/usr/local/cps-board/mobile/stop_mobile.sh
3G/LTEモジュールリセット ^{※1}	/usr/local/cps-board/mobile/reset_mobile.sh
SIMチェック	/usr/local/cps-board/mobile/checkSIM_mobile.sh [終了ステータス] 0: SIMあり "Detect SIM"表示 1: SIMなし "Not Detect"表示
RSSI取得	/usr/local/cps-board/mobile/checkSIM_mobile.sh [終了ステータス] 0: 成功 RSSI値(dbm)表示 1: 失敗
RSRP取得(LTEモデルのみ)	/usr/local/cps-board/mobile/getRSRP.sh [終了ステータス] 0: 成功 RSRP値(dbm)表示 1: 失敗
オプションボードのLED制御 ^{※2}	/usr/local/cps-board/mobile/ctrl_LED.sh param [param] 0: All off 1: Green On Red Off 2: Green Off Red On 3: Green On Red On [終了ステータス] 0: 成功 1: 失敗

※1 root権限が必要です。コンソールで実行する場合はsudoコマンドを用いて実行してください。

※2 CPS-MC341G-ADSC1-111およびCPS-MG341G-ADSC1-111のモデルについて、3Gモジュールが制 御するためLED制御を行うことは出来ません。

8. ターゲット搭載アプリケーション

主な搭載アプリケーション

Application	Light rootfs NOR Flash version	Light rootfs SD version	Ubuntu 14.04	Ubuntu 14.04 with SDK
busybox	1.31.1	1.31.1	-	-
apt-utils	-		1.0.1	1.0.1
binutils	-		-	2.24-5
ncurses	-		-	5.9
apache	2.4.29 ^{**1}	2.4.29 ^{%1}	-	2.4.7-1
ssh server/client	dropbear 2019.78	dropbear 2019.78	open-ssh 6.6	open-ssh 6.6
NTP client	(busybox)	(busybox)	ntpdate 4.2.6	ntpdate 4.2.6
DHCP server	(busybox)	(busybox)	Udhcpd 1.21.0-1	isc-dhcp-server 4.2.4-7
DHCP client	(busybox)	(busybox)	isc-dhcp-client 4.2.4-7	isc-dhcp-client 4.2.4-7
Samba server	-	-	-	4.3.11
Samba client	-	-	-	4.3.11
Nfs Server	-	-	-	-
Nfs Client	-	-	-	-
gcc / g++	-	-	-	4.9.4-2
cmake	-	-	-	3.2.2-2
autoconf	-	-		2.69-6
automake	-	-		1.14.1-2
perl	-	-	5.18.2	5.18.2-2
python	-	-	3.4.3-1	3.4.3-1
php5	5.6.34 ^{%1}	5.6.34 ^{×1}	-	5.5.9
curl	7.59.0 ^{%1}	7.59.0 ^{%1}	7.35.0-1	7.35.0-1
wget	(busybox)	(busybox)	1.15	1.15-1
ftp server	(busybox)	(busybox)	-	vsftpd 3.0.2
ftp client	(busybox)	(busybox)	-	0.17
tftp server	(busybox)	(busybox)	-	-
tftp client	(busybox)	(busybox)	-	-
mail	(busybox)	(busybox)	-	-
iperf	-	-	-	-
minicom	-	-	-	-
ррр	2.4.7	2.4.7	2.4.5-5.1	2.4.5-5.1
рррое	-	-	-	3.8-3
iptables	1.8.4	1.8.4	1.4.21-1	1.4.21-1
Wireless tool	29 ^{%1}	29 ^{※1}	30~pre9-8	30~pre9-8
wpa_supplicant	2.7 ^{%1}	2.7 ^{**1}	2.1-0	2.1-0
Open SSL	1.0.2n ^{×1}	1.0.2n ^{×1}	1.0.1f-1	1.0.1f-1
sudo	1.8.31p1	1.8.31p1	1.8.9p5-1	1.8.9p5-1
gdb	-	-	-	8.2

※1 オプション選択

改訂履歴

改訂日	改訂内容
2016年4月	初版
2016年04月	 FLASH ROMへのインストール用SDのrootfsのディレクトリ間違いを修正 (『内蔵NOR FLASH 起動用のインストールSD カードの作成』) CONPROSYSと接続する推奨シリアルモニタケーブルの型番を「2-1.開発に必要なもの」へ追記 『3-6.ターゲットのサンプルライブラリのビルド』追記 スタック版サンプルアプリケーションプログラム追加 AI/AO制御サンプルプログラム DI/DO制御サンプルプログラム SSI制御サンプルプログラム
2016年10月	 Ver 1.1.0 対応機種追加 CPS-MC341G-ADSC1シリーズ(グローバルモデル) CPS-MC341Q-ADSCxシリーズ CPS-MC341-DS1xシリーズ 開発ホストPCの要求スペックで32bit版Ubuntu14.04廃止 コンパイルツールのインストール方法変更 ビルド手順のフローチャート追加 CONPROSYS Ubuntu14.04対応 起動用SDカードの作成方法にSDイメージファイルの作成方法追加 Appendix デバイスI/FにUSB-Serial制御デバイス追加 Appendix ターゲット搭載アプリケーション内容修正 その他、誤記修正、不足情報付加
2017年10月	 Ver 1.2.0 対応機種追加 CPS-MCS341G-DSx シリーズ CPS-MCS341Q-DSx シリーズ 対応スタックI/O追加 CPS-AI-1608ALI, CPS-CNT-3202I CPS-MC341-ADSC1-931用の内蔵電源 ON/OFF設定ポート追加 Web Setup機能追加 (Ubuntu 14.04 include SDK版のみ) ネットワーク設定方法変更 開発ホストPCの要求スペックに64bit版 Ubuntu16.04追加 3Gモデルの設定を「5-5.ターゲットのネットワーク設定方法」へ統合 Appendix LED制御とDIP Switch/Switchをまとめ、コンパクトタイプシリーズとスタックタイプシリーズのLED / DIP Switch /Switchに変更。 「内蔵NOR FLASHインストール用SDカードの作成(SDイメージファイル)」の項を追加 configure.shの-m, -tオプション廃止
2018年5月	 Ver 1.3.0 軽量版rootfsにSudo、iptables追加 軽量版rootfsにWirelessツール、Apacheを搭載する選択項目追加 Apache搭載時はWeb Setup機能も付属 ネットワーク設定項目およびWeb Setup機能に、ルーター機能、IPフィルタ機能追加 [主な搭載アプリケーション]更新 対応スタックI/O追加 CPS-AI-1608ALI, CPS-CNT-3202I スタック用ドライバおよびライブラリ追加 cpscnt (CPS-MCS341用CNTドライバ) libCpsCnt (CPS-MCS341用CNTライブラリ)
2020年8月	新レイアウトに変更

CONPROSYS Linux SDK ユーザーズマニュアル(クロスビルド版)

改訂日	改訂内容
	 Ver 1.4.0 対応機種追加 CPS-MG341-ADSC1シリーズ, CPS-MG341G-ADSC1シリーズ, CPS-MG341G5-ADSC1, CPS-MCS341G5-DS1 『対応するCONPROSYS製品一覧』のモデル名更新 ビルドの項を、『クロスビルド環境設定』と『ビルド』に分離 『5-5.ターゲットの起動シーケンス』の図を変更 『6-6.軽量版rootfs のビルド』ビルド方法を変更 『Appendix - 2.デバイスI/F』一覧表更新 『Appendix - 8.ターゲット搭載アプリケーション』一覧表更新 『クロスビルド環境設定 - 2.初期設定』のCONPROSYS Productを5種類に集約 ターゲットのrootfsタイプからUbuntu10.04を除外
2022年2月	 Ver 1.4.3 『ターゲット動作確認 – 7.Web Setupについて - 2.ステータスメニュー』に下記項目追加 ルーター機能, IPフィルタ, ログ 『Appendix – 2.デバイスI/F』 スタックタイプAIO 制御デバイスに下記デバイスを追加 CPS-AO-1604ALI 『Appendix – 2.デバイスI/F』 スタックタイプDIO 制御デバイスに下記デバイスを追加 CPS-DI-16L, CPS-DI-16RL, CPS-DO-16L, CPS-RRY-4PCC
2024年11月	Ver 1.5.0 - 対応機種追加 CPS-MGS341-DS1 CPS-MGS341G5-DS1 - 対応スタックI/O追加 CPS-SSI-4C

- 本書の内容について万全を期しておりますが、万一ご不審な点や、記載もれなどお気づきのことがありましたら、お買い求めの販売店または総合インフォメーションへご連絡ください。
- CONPROSYSは、株式会社コンテックの登録商標です。その他、本書中に使用している会社名および製品 名は、一般に各社の商標または登録商標です。

よくあるご質問 (FAQ検索)

FAQライブラリ https://www.contec.com/jp/tsc/

お客さまからよく寄せられるお問い合わせ内容を「Q&A」形式 でご覧いただけます。 製品やサービスに関する疑問やお困りごとの解決にお役立て ください。

CONTEC	にくあるご質問 コンテック FAQ 製品・サービス ダウンロード お助い	802	
注目のFAQ	一覧表示	27547288 🔕 💿 トップカテゴリー	0
③ 計測時毎・透信デバイス用各種ドライ/	の Windows 11 対応状況について	M2M/InT (CONPROSYS)	+
CONPROSYS VTCビデオセミナー		計測制御・通信用インターフ エイス	+
キーワード検索		産業用コンピュータ	+
ホーワードはたは文章で観察できます(200文字は76)	MRts	ネットワーク (無線/石線 LAN)	+
FAQのNo.から検索	注目のキーワード	道機監視・環境計測システム	+
WRIG	コード エラー 診断 Windows ボックス	~JL257	
	CEU 電圧 元スト 動画 値理	各種サービス	+
最新のFAQ		Info&News	
APL-***(98/PC)ドライバのダウンロード Webからの思いなわせほどのように行い	、インストールと使用ドライバの確認方法 いますか?	2024/12/07 ソフトウェア更新情報	6

株式会社コンテック 〒555-0025 大阪市西淀川区姫里3-9-31

https://www.contec.com/

本製品および本書は著作権法によって保護されていますので無断で複写、複製、転載、改変することは禁じられています。

CONPROSYS Linux SDKユーザーズマニュアル(クロスビルド版)

NA04901 (LYTU823) 11222024_rev7 [04072016]

2024年11月改訂