

リファレンスマニュアル

ボックスコンピュータ

BX-T310シリーズ

目次
はじめに4
安全にご使用いただくために12
各部の名称と説明19
ハードウェアのセットアップ32
BIOSの設定42
付録83
オプション品99
各種サービス・お問い合わせ 101

目次

はじめに4
1. 関連マニュアルのご案内 5 2. 製品概要 6 3. 製品ラインアップ 7 4. 特長 8 5. 対応OS 10 6. 同梱品 11
安全にご使用いただくために12
1. 注意記号の説明
各部の名称と説明19
各部の名称と説明191. 各部の名称202. 各部の機能211. DC電源コネクタ: DC-IN212. LED表示: POWER, ACCESS, STATUS223. PC電源スイッチ: POWER SW224. マイク入カインターフェイス: MIC IN225. ライン出力インターフェイス: LINE OUT226. USB3.2 Gen2ボート: USB3.2 Gen2 (USB3.1)237. USB2.0ポート: USB2.0238. CFastカードコネクタ: CFast249. ディスプレイ: DisplayPort2510. ギガビットイーサネット: LAN A, B2611. ディスプレイ: RGB2712. シリアルポート: SERIAL A, B2713. GPIOコネクタ: DIO2914. アンテナコネクタ: ANT1, ANT231
1. 各部の名称

目次

2. ハードウェアのセットアップ 34 1. 本体固定金具の取り付け 34 2. FGの取り付け 35 3. CFastカード抜け防止固定金具の取り付け 36 4. アンテナの取り付け 37 5. ケーブルの固定 38	
5. ダーブルの固定	
1. BIOSの設定を始める前に	
付録 83 1. システムリファレンス	
5. ウォッチドッグタイマ956. 電池961. 電池の仕様962. 電池の廃棄977. SSDの寿命981. 書き換え寿命について982. S.M.A.R.Tについて98	
6. 電池961. 電池の仕様962. 電池の廃棄977. SSDの寿命981. 書き換え寿命について98	

はじめに

本製品に関連する各種マニュアル、製品の概要や同梱品など、本製品をお使いの前に知っていただくべき情報に関する説明をしています。

1. 関連マニュアルのご案内

本製品に関連するマニュアルは以下のように構成しています。 本書と併せてご活用ください。

◆ 必ずお読みください

名称	用途	内容	入手先
製品ガイド	本製品開封後に必ずお読みください。	本製品をご使用になる前に同梱 品を確認、注意いただくことに ついて説明しています。	製品に同梱(印刷物)
リファレンスマニュアル (本書)	本製品を運用する時にお 読みください。	本製品の機能、設定などハード ウェアに関する説明をしていま す。	当社Webサイト よりダウンロー ド(PDF)
IPCご使用上の注意	本製品を運用する前に必 ずお読みください。	本製品に関する注意事項につい て説明をしています。	当社Webサイト よりダウンロー ド(PDF)
MICROSOFT SOFTWARE LICENSE TERMS %1	本製品開封後に必ずお読みください。	Windows ソフトウェアを使用 するお客様の権利および条件を 説明しています。	当社Webサイト よりダウンロー ド(PDF)
プレインストールモデル OSマニュアル ※1	本製品開封後に必ずお読みください。	OSの基本情報、セットアップ 手順、リカバリ手順に関する説 明をしています。	当社Webサイト よりダウンロー ド(PDF)
無線LAN使用上の注意 ※2	本製品開封後に必ずお読みください。	無線LANの使用に関する注意事 項について説明をしています。	当社Webサイト よりダウンロー ド(PDF)
Trellix使用許諾契約書&ソフトウェア使用権許諾契約書 ※3	本製品を運用する前に必ずお読みください。	ソフトウェアを使用するお客様 の権利および条件を説明してい ます。	当社Webサイト よりダウンロー ド(PDF)

- ※1 プレインストールモデルのみ参照ください。
- ※2 無線ありモデルのみ参照ください。
- ※3 Trellixプレインストールモデルのみ参照ください。

◆ ソフトウェア使用許諾のダウンロード

以下のURLよりダウンロードしてご使用ください。

ダウンロード https://www.contec.com/jp/support/useterms/

◆ 各種マニュアルのダウンロード

各種マニュアルは、以下のURLよりダウンロードしてご使用ください。

ダウンロード https://www.contec.com/jp/download/

2. 製品概要

本製品は、Intel® Atomプロセッサx6413E(1.5GHz)を搭載したファンレス組み込み用コンピュータです。 薄型設計でありながら、広温度範囲(-20°C - +60°C エアフロー 0.7m/s)とパフォーマンスを両立しています。DisplayPort採用のほかUSB3.2 Gen2 (USB3.1)×2、LAN×2の豊富なインターフェイスを備えています。また、無線モデルには無線LANを搭載しており、デジタル機器との接続が容易なことや周辺機器と接続するIoTゲートウェイ端末として最適です。

CPUにEmbeddedタイプを採用。安定供給が可能なパーツの使用により、安心してご使用いただけます。さらに、自社カスタマイズBIOSを採用し、BIOSレベルでのサポートが可能です。

3. 製品ラインアップ

本製品には、以下の16種を用意しています。

型式	メモリ	無線	os	記憶装置
BX-T310-J2400			なし	
BX-T310-J2420		74 U	Windows 10 IoT Enterprise 2021	
BX-T310-J2425		IEEE 802.11ac/a/b/g/n	LTSC 64bit 日本語/英語/中国語/ 韓国語	
BX-T310-J2430	DDR4 8GB	なし	Windows 11 IoT Enterprise LTSC	M.2 NVMe 256GB(TLC)
BX-T310-J2435	IEEE 802.11ac/a/b/g/n		2024 64bit 日本語/英語/中国語/ 韓国語	2300B(1LC)
BX-T310-J24B0		なし	Windows 10 IoT Enterprise 2021 LTSC 64bit 日本語/英語/中国語/ 韓国語 Trellixプレインストール	
BX-T310-J3400		451	なし	
BX-T310-J3420		なし	Windows 10 IoT Enterprise 2021]
BX-T310-J3425		IEEE 802.11ac/a/b/g/n	LTSC 64bit 日本語/英語/中国語/ 韓国語	M.2 NVMe 256GB(TLC)
BX-T310-J3430	DDR4 16GB	なし	Windows 11 IoT Enterprise LTSC	,
BX-T310-J3435		IEEE 802.11ac/a/b/g/n	2024 64bit 日本語/英語/中国語/ 韓国語	
BX-T310-J3600		なし	なし	
BX-T310-J3620		<i>7</i> 4.0	Windows 10 IoT Enterprise 2021	
BX-T310-J3625	IEEE 802.11ac/a/b/g		LTSC 64bit 日本語/英語/中国語/ 韓国語	M.2 NVMe 1TB(TLC)
BX-T310-J3630		なし	Windows 11 IoT Enterprise LTSC	
BX-T310-J3635		IEEE 802.11ac/a/b/g/n	2024 64bit 日本語/英語/中国語/ 韓国語	

4. 特長

■ 装置の小型化に貢献、設置面積ほぼA5サイズの省スペースPC

厚み30.3mm×幅182mm×奥行155mmの省スペース設計、わずか50mmの隙間にA5サイズ程度の小さな設置面積で設置が可能です。

■ 広温度範囲対応 -20 - +60℃での動作保証

-20 - +60℃^{※1}の広温度環境下での安定動作が可能です。

■ OSシャットダウン不要の電源断運用に対応「電断プロテクト®」

電源障害からのデータ保護とストレージへの書き込みを禁止する「電断プロテクト®」機能を搭載。Windows IoT Enterpriseのロックダウン (ディスク書き込み抑制) 機能と併用することで、シャットダウン処理なしで安全に電源OFFすることが可能です。また、突然の電源断による ファイルシステムやデータの破損を防ぐことができます。

■ 信頼性の高いシステムに貢献する高セキュリティ設計

TPM2.0やセキュアブートといった最新のセキュリティ機能、USBブートプロテクトといったコンテック独自の保護機能を搭載しており、産業用途に求められる高セキュリティを意識した設計を行っています。

■ 自社設計のBIOSによる便利なユーティリティー

コンテック独自の便利なBIOSによるユーティリティー^{※2}を実装しています。「CONTEC Fast Boot」では10秒^{※3}でのWindows起動を実現しています。「Disk Copy」機能ではBIOSレベルでの安全なディスク・バックアップが可能で、ファイル形式や圧縮ファイル形式でのバックアップもサポートしています。また、BIOSを更新するための「BIOS更新ツール」^{※4}を用意しております。

■ ランニングコスト削減と省エネルギー化に貢献

低消費電力プラットフォームのIntel Atom®プロセッサx6413Eを採用、十分なパフォーマンスを確保しながら低消費電力を実現しています。

■ 保守点検業務を軽減するファンレス設計

CPUファンを廃したスピンドルレス設計です。ファンによるホコリや異物の侵入を心配する必要がなく、経年劣化する部品の使用を極力抑えた 設計と合わせて保守点検業務の負担を大幅に軽減します。

■ 各種周辺機器との接続を容易にする豊富なインターフェイス

DisplayPort×1、USB3.2 Gen2 (USB3.1)×2、USB2.0×4、LAN×2に加えて、アナログRGBポート、RS-232C×2(1ポートはRS-422A/485 切り替え可能) を装備。ストレージには交換が容易なCFastカードスロットを採用しており、ログや収集データの書き込み領域として利用が可能です。無線モデル(BX-T310-Jxx25)では、無線LAN対応機器との接続が可能です。

■ Trellix ホワイトリスト型ウィルス対策ソフトウェアに対応

一部のOSプレインストールタイプには、Trellix (IBMcAfee) ホワイトリスト型ウィルス対策ソフトウェアがプレインストールされています。ホワイトリスト型は実行を許可するプログラムやコードのリストを予め登録し、登録されていないプログラムやコードの実行をすべてブロックするセキュリティ対策の方式です。不正なプログラムの実行を阻止し、ゼロディマルウェアの攻撃から組み込みPCを保護することができます。対策方法や修正プログラムが提供される以前(ゼロディ)の脆弱性を狙った攻撃に有効です。

はじめに

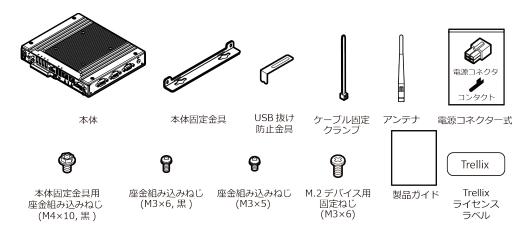
BX-T310 シリーズ リファレンスマニュアル

- ※1 エアフロー 0.7m/s
- ※2 詳細については「BIOSセットアップ」章の各項目をご確認ください。
- ※3 工場出荷時のWindows10およびHORM機能有効時の実測値になります。構成によって時間は変動します。また高速起動有効時、TXE・TPM・Network Stack・SMART Self Testはサポートされません。
- ※4 詳細は、当社テクニカルサポートセンターまでお問い合わせください。

5. 対応OS

- Windows 10 IoT Enterprise 2021 LTSC 64bit (日本語 / 英語 / 中国語 / 韓国語)
- Windows 11 IoT Enterprise LTSC 2024 64bit (日本語 / 英語 / 中国語 / 韓国語)

6. 同梱品


ご使用になる前に、次の同梱品がすべて揃っていることを確認してください。

万一、同梱品が足りない場合や破損している場合は、お買い求めの販売店、またはテクニカルサポートセンターにご連絡ください。

テクニカルサポートセンター https://www.contec.com/jp/tsc/

	BX-T310-Jxx00 [ベースモデル]	BX-T310-Jxx20 [OSプレインストール モデル]	BX-T310-Jxx25 [OSプレインストール 無線モデル]
名称	数量	数量	数量
本体	1	1	1
本体固定金具	2	2	2
USB抜け防止金具	6	6	6
ケーブル固定クランプ	2	2	2
座金組み込みねじ(M3×5)	6	6	6
座金組み込みねじ(M3×6,黒)	4	4	4
本体固定金具用座金組み込みねじ (M4×10,黒)	4	4	4
M.2デバイス用固定ねじ(M3×6)	1	1	-
電源コネクタ	1	1	1
電源コネクター式 電源コネクタ用 コンタクト	4	4	4
アンテナ	-	-	2
Trellixライセンスラベル	-	1 %1	-
製品ガイド	1	1	1

同梱品イメージ

※1 Trellixプレインストールタイプのみ

安全にご使用いただくために

本製品を安全に使用するために、注意していただくことを 説明しています。本製品をご使用になる前に、必ずお読み ください。

1. 注意記号の説明

本書では、人身事故や機器の破壊をさけるため、次のシンボルで安全に関する情報を提供しています。内容をよく理解し、安全に機器を操作してください。

△危険	「死亡または重傷を負うことがあり、かつその切迫の度合いが高い内容」を示しま す。
⚠警告	「死亡または重傷を負うことが想定される内容」を示します。
△注意	「傷害を負うことが想定されるか、または物的損害の発生が想定される内容」を示します。

2. 取り扱い上の注意

⚠警告

- ●電源ケーブルの取り付け、取り外しは必ず電源が供給されていないことを確認してから行ってください。
- 本製品の改造は行わないでください。
- 各ボード、ケーブルの抜き差しは必ず電源を切ってから行ってください。
- 電池の交換が必要な場合は修理となりますので、販売店または当社各支社・営業所までお問い合わせく ださい。
- 使用済み電池を廃棄される場合には自治体の指示に従って適切に廃棄してください。電池の取り外し方法は付録を参照してください。
- ◆ 本製品は航空、宇宙、原子力、医療機器など高度な信頼性が必要な用途への使用を想定していません。これらの用途には使用しないでください。
- 本製品を列車、自動車、防災防犯装置など安全性に関わる用途にご使用の場合、お買い求めの販売店または当社テクニカルサポートセンターにご相談ください。

△注意

● 仕様の範囲を越える高温下や低温下、または温度変化の激しい場所での使用および保管はしないでください。

例 ・直射日光の当たる場所 ・熱源の近く

- 強い磁気や雑音を発生する装置の近くで使用しないでください。本製品が誤動作する原因となります。
- 薬品が発散している空気中や、薬品にふれる場所での使用および保管は避けてください。
- 本製品の汚れは、柔らかい布に水または中性洗剤を含ませて軽く拭いてください。ベンジン、シンナーなど発揮性のものや薬品を用いて拭いたりしますと、塗装の剥離や変色の原因となります。
- 本製品の筐体は、高温になる場合があります。火傷の恐れがありますので、動作時および電源OFF直後 は直接手を触れないようにしてください。また、この部分に手を触れる可能性のある場所への設置はお 避けください。
- いかなる原因によっても当社ではストレージの記録内容に関する保証は負いかねます。
- 拡張カードの装着、取り外しや各コネクタの着脱の際には、必ず電源ケーブルをコンセントから抜いた 状態にしてください。
- 本製品の電源はファイルの破損を防ぐため、必ずOS終了後に切ってください。
- 本製品を改造したものに対しては、当社は一切の責任を負いかねます。
- 故障や異常(異臭や過度の発熱)に気づいた場合は、電源コードのプラグを抜いて、お買い求めの販売店 または当社テクニカルサポートセンターにご相談ください。
- 周辺機器との接続ケーブルは、接地されたシールドケーブルを使用ください。
- 製品にD-SUBコネクタを有する場合、固定するケーブルコネクタの適正締付トルクは、2Kgf・cm以下です。

■ 安全にご使用いただくために ■ BX-T310 シリーズ リファレンスマニュアル

- ストレージはホットプラグ非対応です。本製品の電源ON状態でのストレージの抜き挿しおよび接触は 行わないでください。誤動作および故障の原因になります。
- オプション品以外のCFastカードをご使用の場合は、本製品の仕様を保証することができません。仕様内でご使用になりたい場合は、必ずオプション品のCFastカードをお使いください。
- 構成部品の寿命について
 - (1) 一次電池・・・内部カレンダー時計、CMOS RAMのバックアップにリチウム一次電池を使用しています。1日16時間無通電のバックアップ時間は25℃において10年以上です。
 - (2) M.2 NVMe···OSプレインストールモデルでは、OS格納領域にM.2 NVMeを使用しています。 推定寿命は、TLCモデルで書き換え回数3千回となります。詳細は付録をご参照ください。
 - (3) CFast・・・推定寿命は、SLCタイプで書き換え回数6万回、Q-MLCタイプで書き換え回数2万回、MLC タイプで書き換え回数2千回となります。
 - * 消耗部品の交換につきましては修理扱い(有償)にて対応させていただきます。
 - * 消耗部品の寿命については参考値であり、保証する値ではありませんことをご了承ください。

1. VCCIクラスA注意事項

この装置は、クラスA機器です。この装置を住宅環境で使用すると電波妨害を引き起こすことがあります。この場合には使用者が適切な対策を講ずるよう要求されることがあります。

VCCI-A

2. FCC PART 15 クラスA 注意事項

NOTE

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC WARNING

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Part15 Subpart E

Compliance with FCC requirement 15.407(c)

Data transmission is always initiated by software, which is the passed down through the MAC, through the digital and analog baseband, and finally to the RF chip. Several special packets are initiated by the MAC. These are the only ways the digital baseband portion will turn on the RF transmitter, which it then turns off at the end of the packet. Therefore, the transmitter will be on only while one of the aforementioned packets is being transmitted. In other words, this device automatically discontinue transmission in case of either absence of information to transmit or operational failure. Frequency Tolerance: 20 ppm

Part15 Subpart C

This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter. This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines. This equipment should be installed and operated keeping the radiator at least 20cm or more away from person's body.

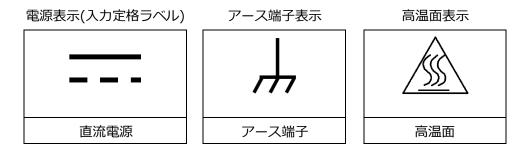
3. EN55032クラスA注意事項

Warning:

Operation of this equipment in a residential environment could cause radio interference.

4. CCC EMC Part A注意事項

警告: 在居住环境中,运行此设备可能会造成无线电干扰


5. 高地・熱帯で使用する場合の注意事項

警告标识	警告声明
2000 m	仅适用于海拔2000m以下地区安全使用
	仅适用于非热带气候条件下安全使用

6. 本製品を組み込んだ機器にてUL申請する際の注意

- 本製品は、汚染度2でUL認証を受けております。
- 操作者が本製品のヒートシンクに接触しないように機械的エンクロージャーを設けてください。
- 外側のエンクロージャーは、防火エンクロージャーとして機能するようにしてください。

7. 表示マーキング

3. セキュリティに関する注意

ネットワークに接続する際は、存在するセキュリティリスクを考慮の上、セキュリティ対策事例を参考に本体および関連するネットワーク機器を適切に設定してください。

1. セキュリティリスク

- 外部ネットワークからの不正侵入に伴うシステムの停止、データの破損、情報の窃取、マルウェア※1 への感染。
- 侵入後にその機器を踏み台として、外部ネットワークへの攻撃(被害者から加害者になる)。
- 外部へのネットワーク接続に伴う意図しない情報漏洩。
- これら事故の二次被害として、風評被害、損害賠償負担、信用の失墜、機会損失等。

※1: マルウェア(Malicious Software): 悪意あるプログラム。ユーザーの望まない動作をするプログラム。

2. セキュリティ対策事例

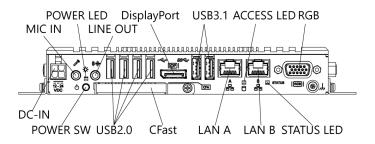
- 初期パスワードを変更する。(パスワード設定方法は、ご使用の製品の解説書/マニュアルを参照してください)
- パスワード強度の高いものを設定する。

半角英字小文字、大文字、数字等を含み、類推されにくいパスワードを使用する

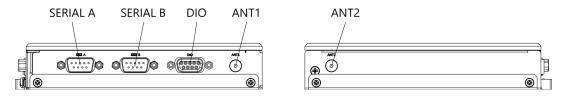
- 定期的にパスワードを変更する。
- 不要なネットワークサービスや、不要な機能を停止(無効化)する。
- ネットワーク接続機器において、ネットワークでのアクセス元を制限する。※2
- ネットワーク接続機器において、ネットワークの解放ポートを制限する。※2
- 専用ネットワークやVPN※3 など閉域網を使ってネットワークを構築する。
- ※2: 設定方法はネットワーク機器のメーカー各社へお問い合わせください。
- ※3: VPN(Virtual Private Network): 通信経路を認証や暗号化を用いて保護することにより、第三者が 侵入することができない、安全なネットワークです。

不正アクセスの手段や抜け道(セキュリティホール)は、日夜新たに発見されており、それを防ぐ完璧な手段はありません。

インターネット接続には、常に危険が伴うことをご理解いただくとともに、常に新しい情報を入手し、 セキュリティ対策を行うことを強くおすすめします。


各部の名称と説明

本製品の各部の名称とそれらの機能、各コネクタのピンアサインについて説明をしています。


1. 各部の名称

各部の名称を下図に示します。

◆ 正面

◆ 側面

名称	機能				
◆正面					
DC-IN	DC電源コネクタ				
POWER LED	電源ON表示LED				
ACCESS LED	SATAデバイスアクセス表示LED				
STATUS LED	ステータス表示LED				
POWER SW	PC電源スイッチ				
MIC IN	マイク入力(3.5Ф PHONE JACK)				
LINE OUT	ライン出力(3.5Ф PHONE JACK)				
USB3.1	USB3.2 Gen2 (USB3.1)ポートコネクタ×2				
USB 2.0	USB2.0ポートコネクタ×4				
CFast	CFastカードスロット(SATA接続)				
DisplayPort	ディスプレイ(20ピン・メス)				
LAN A	Ethernet 2.5GBASE-T/1000BASE-T/100BASE-TX/10BASE-T RJ-45コネクタ				
LAN B	Ethernet 2.5GBASE-T/1000BASE-T/100BASE-TX/10BASE-T RJ-45コネクタ				
RGB	ディスプレイ(15ピンD-SUB・メス)				
◆側面					
SERIAL A	シリアルポートAコネクタ(9ピンD-SUB・オス) (RS-232C/422/485)				
SERIAL B	シリアルポートBコネクタ(9ピンD-SUB・オス) (RS-232C)				
DIO	GPIOポートコネクタ(9ピンD-SUB・メス)				
ANT1	アンテナコネクタ(無線LAN用) ※1				
◆側面					
ANT2	アンテナコネクタ(無線LAN用) ※1				

※1 アンテナコネクタは無線モデルにのみ搭載されています。

2. 各部の機能

本製品のコネクタやスイッチなど各部の機能を説明します。

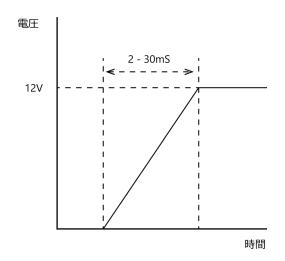
1. DC電源コネクタ: DC-IN

DC電源入力コネクタを備えています。

定格入力電圧: 12 - 24VDC入力電圧範囲: 10.8 - 31.2VDC

● 電源容量: 12V 3.5A以上、24V 1.8A以上

DC電源コネクタ


コネクタ型式	9360-04P(ALEX製)	
	ピン番号	信号名
	1	GND
	2	GND
	3	12 - 24V
	4	12 - 24V

ケーブル側適合コネクタ

ハウジング: 9357-04(ALEX製)または5557-04R(MOLEX製)

コンタクト: 4256T2-LF(AWG18-24)(ALEX製)または5556(AWG18-24)(MOLEX製)

電源立ち上がり時間

2. LED表示: POWER, ACCESS, STATUS

本製品の前面には3つのLEDを備えています。

LEDの名称	状態	表示内容
POWER LED	消灯	本製品の電源がOFF状態であることを示します。
	点灯(緑)	本製品の電源がON状態であることを示します。
ACCESS LED	点灯(橙)	SATAデバイスがアクセス状態であることを示します。※1
STATUS LED	消灯	ユーザーアプリケーションからLEDの動作を制御できます。※2
	点滅、点灯(赤)	ユーザーアプリケーションからLEDの動作を制御できます。※2

- ※1 NVMeデバイスは対応していません。
- ※2 STATUS LEDを制御するにはCONTEC Managerが必要です。

(OSプレインストールモデルには、出荷時状態でインストール済)

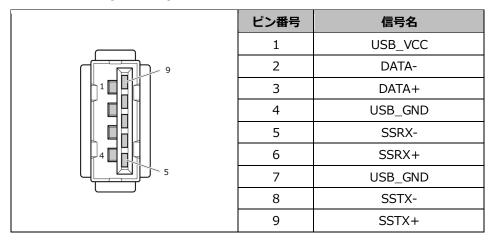
なお、CONTEC Manager は当社Webサイトよりダウンロードできます。詳細は、当社テクニカルサポートセンターまでお問い合わせください。

3. PC電源スイッチ: POWER SW

電源スイッチを備えています。本体の電源のON/OFFができます。

4. マイク入力インターフェイス: MIC IN

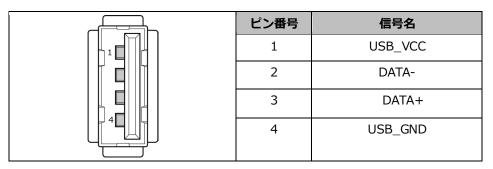
マイク入力用のコネクタを備えています。音声入力のためのマイクが接続可能です。


5. ライン出力インターフェイス:LINE OUT

ライン出力用のコネクタを備えています。ヘッドホンやアンプ付きスピーカーが接続可能です。

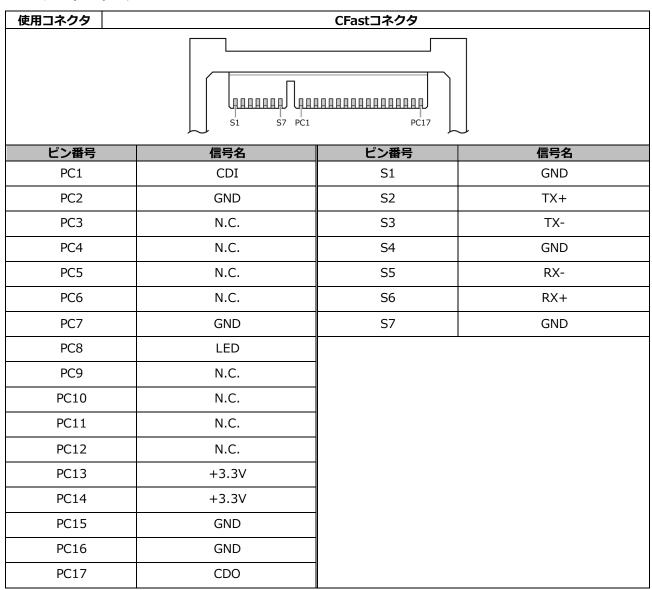
6. USB3.2 Gen2ポート: USB3.2 Gen2 (USB3.1)

USB Type-AのUSB 3.2 Gen2 (USB3.1)のインターフェイスを2ポート備えています。


USB3.2 Gen2 (USB3.1)コネクタ

7. USB2.0ポート: USB2.0

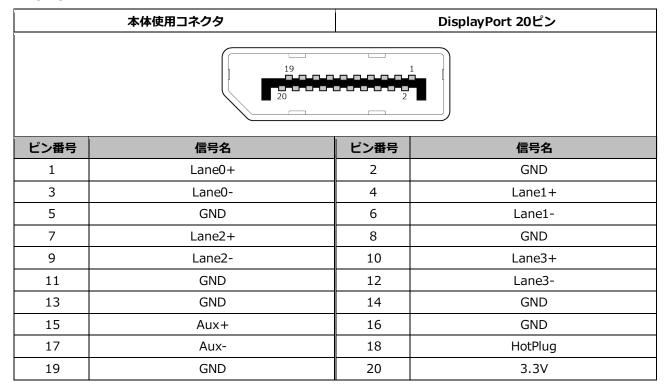
USB Type-AのUSB 2.0のインターフェイスを4ポート備えています。


USB2.0コネクタ

8. CFastカードコネクタ: CFast

CFastカードコネクタは、CFastカード(Type I)を接続できます。

CFastカードコネクタ


△注意

CFastカードは、ホットプラグに対応していません。本製品の電源ON状態でのCFastカードの抜き挿しおよび接触は行わないでください。誤動作および故障の原因になります。

9. ディスプレイ: DisplayPort

DisplayPortインターフェイスを備えています。

DisplayPortコネクタ

企注意

DisplayPortインターフェイスに対してディスプレイケーブルを接続せずBIOSセットアップメニューを起動し、起動後にディスプレイケーブルを接続した場合は、表示が行えない場合があります。

10. ギガビットイーサネット: LAN A, B

ギガビットイーサネットを2ポート備えています。

● ネットワーク形態 : 2.5GBASE-T/1000BASE-T/100BASE-TX/10BASE-T

● 伝送速度 ※ : 2.5G/1000M/100M/10M bps

● ネットワーク経路長最大 : 100m/セグメント

● コントローラ : Intel® Ethernet Controller I226

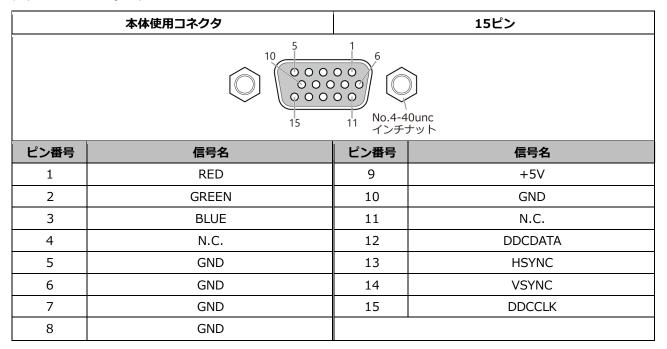
※ 1000M/2.5Gbps動作のためにはカテゴリ5eケーブル以上を使用する必要があります。

イーサネットコネクタ

	ピン番号	信号名	
Transmit LED Link LED	しノ田与	10/100BASE-TX	1000/2.5GBASE-T
	1	TX+	TRD+(0)
	2	TX –	TRD-(0)
	3	RX+	TRD+(1)
	4	N.C.	TRD+(2)
	5	N.C.	TRD-(2)
	6	RX-	TRD-(1)
	7	N.C.	TRD+(3)
	8	N.C.	TRD-(3)

ネットワークの状態表示用LED

LED	内容	
右LED	リンクLED	
	正常動作時:	緑色点灯
	データ送受信時:	緑色点滅
左LED	動作LED	
	10Mbps:	消灯
	100Mbps :	消灯
	1000Mbps:	緑色点灯
	2.5Gbps :	橙色点灯


△ 注意

OSプリインストールタイプ以外のOSをご使用の場合、シルク印刷"LAN-A", "LAN-B"に対し、OSの認識順序が不定のためネットワークアダプターの表示順序が変わるケースがあります。

11. ディスプレイ: RGB

アナログRGBインターフェイスを備えています。

アナログRGBコネクタ

企注意

アナログRGBインターフェイスに対してディスプレイケーブルを接続せずOSを起動し、OS起動後にディスプレイケーブルを接続した場合は、表示が行えない場合があります。

12. シリアルポート: SERIAL A, B

ボーレート115,200bps (Max.)、送信専用データバッファ16byte、受信専用データバッファ16byteの RS-232C準拠のシリアルポートを2ポート(SERIAL Aは、RS-232C/422/485)備えています。

I/Oアドレスの詳細とレジスタ機能については、「付録」の「SERIALのI/Oアドレスとレジスタ機能(P90)」を参照ください。

SERIAL I/Oアドレス、割り込み

SERIAL	I/0アドレス	割り込み
А	3F8h – 3FFh	IRQ 4
В	2F8h – 2FFh	IRQ 3

SERIAL Aシリアルポートコネクタ

本体使用	用コネクタ	9ピンD-SUB(オス)		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
ピン番号	RS-232C	RS-422	RS-485	
1	DCD	TX-	DATA-	
2	RD	TX+	DATA+	
3	TD	RX+	-	
4	DTR	RX-	-	
5	GND	GND	GND	
6	DSR	RTS-	-	
7	RTS	RTS+	-	
8	CTS	CTS+	-	
9	RI	CTS-	-	

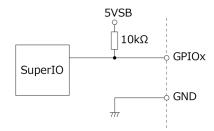
SERIAL Bシリアルポートコネクタ

13. GPIOコネクタ: DIO

リモート用電源スイッチと汎用の非絶縁型入出力を6点搭載しています。※

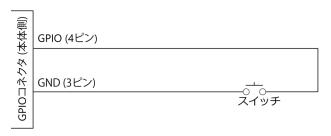
※ 汎用入出力を制御するにはCONTEC Managerが必要です。(OSプレインストールモデルには、出荷時状態でインストール済)

なお、CONTEC Manager は当社Webサイトよりダウンロードできます。詳細は、当社テクニカルサポートセンターまでお問い合わせください。


GPIOコネクタ

本体使用	コネクタ	9ピンD-SUB(メス)	
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
ピン番号	信号名	内容	
1	POWER SW(+)	リモート用電源スイッチです。 +と-を接触させることでPOWER SWと同様の動作になり	
2	POWER SW(-)	キと-を接触させること CPOWER SWと同様の動作になり ます。 	
3	GND	グラウンド	
4	GPIO0		
5	GPIO1		
6	GPIO2	汎用入出力 それぞれ入力/出力を選択できます。	
7	GPIO3		
8	GPIO4]	
9	GPIO5		

GPIOコネクタの仕様


項	目	仕様
入出力点数		6点(BIOS設定にて、入力/出力を選択)
入力部		
	入力形式	非絶縁5VTTLレベル (正論理、内部に5Vスタンバイ・10KΩのプルアップ有)
出力部		
	出力形式	非絶縁5VTTLレベル (正論理、内部に5Vスタンバイ・10KΩのプルアップ有)
	出力定格	5VDC 12mA

◆ 等価回路

◆ 入力選択時(スイッチとの接続例)

スイッチが「ON」のとき、該当するビットは「O」になります。 スイッチが「OFF」のとき、該当するビットは「1」になります。

◆ 出力選択時(LEDとの接続例)

該当するビットに「0」を出力すると、対応するLEDが「点灯」になります。 該当するビットに「1」を出力すると、対応するLEDが「消灯」になります。

14. アンテナコネクタ: ANT1, ANT2

アンテナ接続用のコネクタを2つ備えています。

アンテナ1本の場合でも無線LANの通信は可能です。仕様は下記表を参照ください。 なお、アンテナを使用しない場合の終端抵抗の取り付けは不要です。

コネクタ形状	RP-SMA	
	名称	仕様
	ANT1	無線LAN用アンテナコネクタ
	ANT2	無線LAN用アンテナコネクタ

△注意

電波法の制約がありますので、同梱品およびオプション品以外のアンテナを接続しないでください。

ハードウェアのセットアップ

本製品の設置、接続、設定方法について説明をしています。

1. ご使用にあたって

以下の手順で本書を活用いただき、本製品のセットアップを行ってください。

STEP1 この章の説明を参照の上、設置・接続・設定を行ってください。

STEP2 ケーブルの接続

キーボードやディスプレイなど必要な外部機器のケーブルを本製品と接続してください。

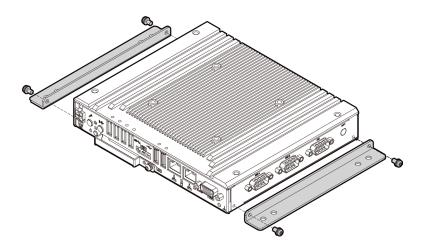
STEP3 電源の投入

STEP1 - 2が正しく実施されていることを再度確認し、電源をONにしてください。電源をONにした後異常を感じた場合にはただちに電源をOFFにし、正しくセットアップが行われているかどうかを確認してください。

STEP4 BIOSセットアップ

『**BIOS(P42)**』を参照し、BIOSセットアップを実行してください。なお、BIOSセットアップを 行うためにUSBキーボード、DisplayPortもしくはアナログRGB搭載のディスプレイが別途必要に なります。

企注意

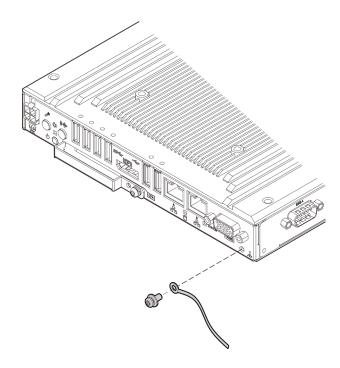

- 初めて電源を投入する前に、必ずキーボードとマウスを接続してください。
- ディスプレイは、必ず電源投入前に接続してください。電源投入後に接続した場合、表示されない場合 があります。
- ご使用になる前は必ず「Restore Defaults」を実行してBIOSのセットアップ状態を初期値にしてください。(詳細は、BIOSセットアップの「Save & Exit (P76)」を参照してください。)

2. ハードウェアのセットアップ

- 作業前に電源がOFFになっていることを確認してください。
- 説明しているねじ以外は外さないようにしてください。

1. 本体固定金具の取り付け

1 同梱の本体固定金具をねじ止めします。ねじの取り付け時は、無理な力を加えずに締めてください。


同梱ねじ:座金組み込みねじ (M3×6,黒)

△注意

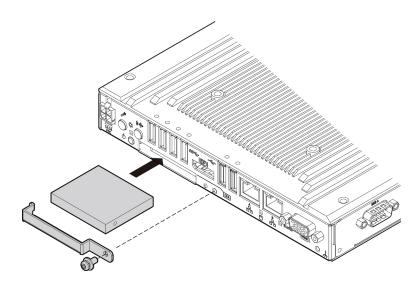
指定以上の締め付けトルクでねじ止めすると、ねじ穴が壊れる場合があります。 適正なねじの締め付けトルクは、5 - 6kgf·cm以下です。

2. FGの取り付け

1 FGをねじ止めします。

△注意

本製品のFG端子は、GND信号と導通されています。

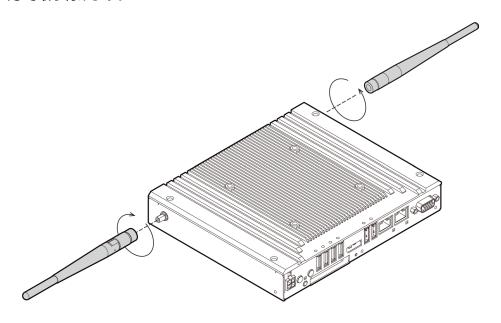

なお、導通状態を切り離しできません。

指定以上の締め付けトルクでねじ止めすると、ねじ穴が壊れる場合があります。

適正なねじの締め付けトルクは、5 - 6kgf·cm以下です。

3. CFastカード抜け防止固定金具の取り付け

1 CFastカードを挿入後、固定金具をねじ止めします。



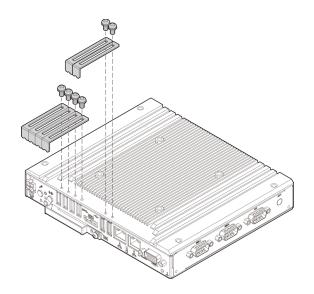
企注意

- CFastカードは上面を上にして挿入してください。
- 指定以上の締め付けトルクでねじ止めすると、ねじ穴が壊れる場合があります。適正なねじの締め付けトルクは、5 6kgf·cm以下です。
- オプション品以外のCFastカードをご使用の場合は、本製品の仕様を保証することができません。仕様内でご使用になりたい場合は、必ずオプション品のCFastカードをお使いください。
- 静電気による破損を防ぐため、CFastカードの取り付け、取り外しを行う際は帯電防止対策(静電防止リストバンドを装着する等)を行ってください。
- CFastカードの取り付け、取り外しを行う際は、基板上の電子部品には手を触れないでください。
- CFastカードの端子部分には触らないでください。故障の原因になります。
- CFastカードの挿入向きを間違えないようにしてください。またCFastカードを挿入するときは、力を加えすぎないようにしてください。コネクタの破損を引き起こす恐れがあります。
- 挿入前のCFastカードに、落下など強い衝撃を与えないでください。故障の原因となります。

4. アンテナの取り付け

1 本製品側面にあるアンテナコネクタ(ANT1, ANT2)に同梱品のアンテナを差し込み、アンテナを矢印の向きに回して取り付けます。

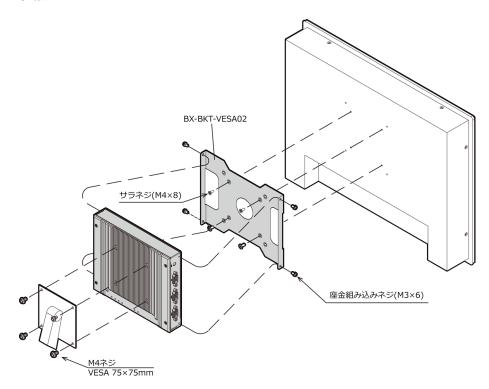
企注意

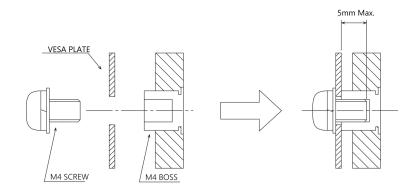

アンテナがしっかりと取り付けられているかご確認ください。

5. ケーブルの固定

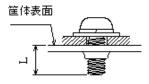
本製品には、ケーブル固定用のケーブル固定クランプを同梱しています。

LINE OUTケーブル、USBケーブルの固定


USB抜け防止用固定金具にケーブル固定クランプを取り付ける穴を用意しています。LINEOUTケーブル、 USBケーブルなどのロック機構がないコネクタにケーブル固定クランプを使用することによりコネクタ抜け を防止することができます。ケーブルの接続状況、配線方向に合わせて使用ください。

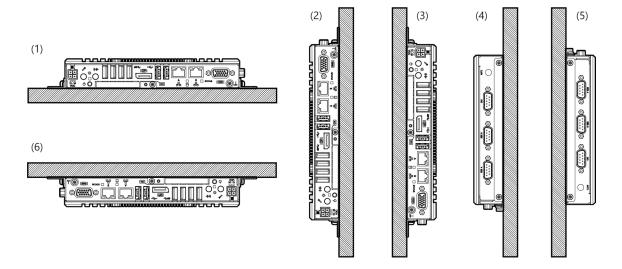

同梱ねじ:座金組み込みねじ(M3×5)

6. VESA金具の取り付け


本製品VESA規格に対応しています。VESA取り付けおよびVESA取り付け金具「BX-BKT-VESA02」の取り付け方法は以下を参照ください。

*1: VESA取り付け用のねじの長さは(VESA PLATEの厚さ+5mm)以下にしてください。 それ以上の長さのねじを使用すると、確実に固定できない場合があります。

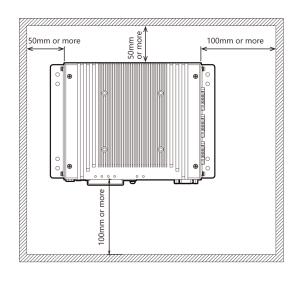
*2:同梱の本体固定金具を固定する際には、同梱ねじ(M3x6)を使用してください。 それ以外の場合は、筐体表面からねじ先端までの侵入長さ(L)を4mm以下にしてください。 それ以上の長さのねじを使用すると、本体が破損する危険があります。

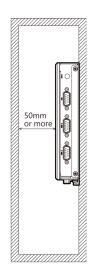

*3:液晶ディスプレイの取り付けが可能な重量は、最大8kg可能です。

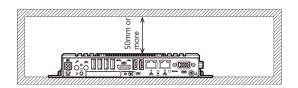
7. 設置条件

本製品の周囲は、高温発熱や排気を伴う機器と距離を開けるなどの対策を行い、周囲温度が環境条件の範囲 内収まるようにしてください。

● -20℃ - +60℃の使用周囲温度時の設置方向

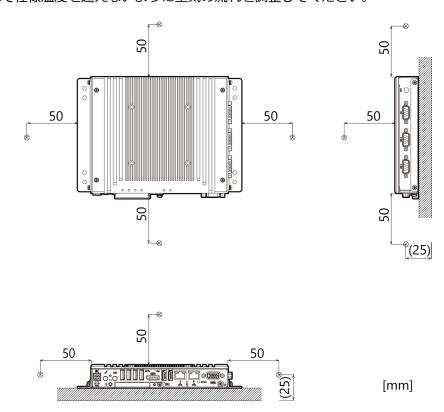

設置イメージ




△注意

周囲温度が使用範囲内であっても、高温発熱する機器が近くにある場合は放射(輻射)の影響を受け本体の温度が上昇し動作不良を起こす可能性がありますのでご注意ください。

周囲と本体の距離(参考)



周囲温度について

本製品では以下のように複数の測定ポイントの温度を周囲温度としています。ご使用の際はその測定ポイントの温度がすべて仕様温度を超えないように空気の流れを調整してください。

BIOSの設定

コンピュータの基本情報を管理しているBIOSの設定・変 更および確認方法について説明しています。

1. BIOSの設定を始める前に

BIOSは、システムの起動に必要なハードウェアを制御するソフトウェアです。BIOSのデフォルト設定は通常の使用環境で、最適なパフォーマンスを実現できるように設定されています。以下の状況下では、デフォルト設定の状態で使用することをお勧めします。

● システムの起動時にエラーメッセージが表示され、「Aptio Setup Utility」を起動するように指示があった場合。

警告

- 不適切な設定を行うと、システムが起動しない、または不安定になる症状が発生する場合があります。 設置を変更する場合は専門知識を持った技術者のアドバイスを受けることを強くお勧めします。
- セットアップでシステムを変更してそれを保存した後にコンピュータをブートできなくなった場合は、 修理が必要となります。システムに対しては、完全に理解している設定以外は変更しないでください。 特にCPU・チップセットのデフォルト設定は、一切変更しないことを推奨します。これらのデフォルト は、AMI社とシステムメーカーの両者がパフォーマンスと信頼性を最大限保証するために十分に考慮し て選択した値です。これらの設定をわずかに変更しても、修理せざるを得ないような場合が生じる可能 性があります。

1. Aptio Setup Utilityの操作

ここでは、「Aptio Setup Utility」の操作方法について説明します。

◆ Setup Utilityの起動

次のいずれかの方法で、「Aptio Setup Utility」を起動することができます。

- コンピュータの電源を入れた直後、または<Esc>キーを押します。
- POST(power On Self-Test)の実行中、画面に"Press or <Esc> to enter SETUP"というメッセージが表示された時点でまたは<Esc>キーを押します。

キーを押す前に"Press < Del > or < Esc > to enter SETUP"のメッセージが消えた場合、「Aptio Setup Utility」にアクセスするには、コンピュータの電源をOFFにした後、電源をONにします。

USBキーボードが接続されている場合は、<Ctrl>、<Alt>、キーを同時に押して再起動することもできます。

◆ 画面構成

「Aptio Setup Utility」の操作は、キーボードで行います。

通常、キーボードの矢印キーを用いてメニューバー、設定項目間を移動し、<Enter>キーを押して選択します。設定項目値を変更するには<->および<+>キーを使用します。<F1>キーを押すとへルプが表示され、<Esc>キーを押すとSetup Utilityが終了します。

◆ キー操作

Setup Utilityの画面操作は、次のキーを使用します。

+ -	機能
上矢印	前の項目に移動する。
下矢印	次の項目に移動する。
左矢印	左の項目に移動する(メニューバー)。
右矢印	右の項目に移動する(メニューバー)。
Esc	メインメニュー:変更を保存せずに終了します。 サブメニュー:現在のページを終了し、次レベルのメニューを表示します。
Enter	選択した項目に移動します。
+	数値を増分または変更します。
_	数値を減分または変更します。
F1	キー機能のヘルプ画面を起動します。
F2	NVRAMから前の数値をロードします。
F3	BIOSデフォルトテーブルから最適デフォルトをロードします。
F4	すべての設定変更をNVRAMへ保存し、終了します。

◆ ヘルプの確認

<F1>キーを押すと、表示されている項目に関する適切なキーまたは選択肢が、小さなポップアップウィンドウに表示されます。Helpウィンドウを終了するには、<Esc>キーを押します。

◆ Aptio Setup Utilityの終了

「Aptio Setup Utility」を終了する方法は、次の方法があります。

Save Changes and Exit (変更内容を保存し終了する)

変更した設定値を保存し、「Aptio Setup Utility」を終了します。再起動が必要な設定変更を行った場合は、 再起動します。

1 <F4>キーを押す、または「Save & Exit」メニュー画面 – 「Save Changes and Exit」を選択すると、次のメッセージが表示されます。

2 [Yes]を選択し、[Enter]キーを押します。

「Aptio Setup Utility」が終了し、パソコンが再起動します。

Discard Changes and Exit (変更内容を保存せずに終了する)

変更した設定値を保存せずに、「Aptio Setup Utility」を終了します。

1 <Esc>キーを押す、または「Save & Exit」メニュー画面 – 「Discard Changes and Exit」を選択すると、次のメッセージが表示されます。

2 [Yes]を選択し、[Enter]キーを押します。 「Aptio Setup Utility」が終了し、OSが起動します。

2. Setup Utilityのメニュー

Aptio Setup Utilityには、次の6つのメニューがあります。

右矢印または左矢印キーでメニュー間を移動でき、上矢印または下矢印で設定項目に移動できます。

BIOS Information		Set the Date. Use Tab to
Project Version	T310C 1.04 x64	switch between Date elements.
Build Date and Time	09/21/2023 10:25:50	Default Ranges:
Access Level	Administrator	Year: 1998–9999 Months: 1–12
Compute Die Information		Days: Dependent on month
Name	ElkhartLake ULX	Range of Years may vary.
Type	Intel Atom(R) x6413E Processor @ 1.50GHz	
Speed	1500 MHz	
ID	0x90661	
Stepping	ВО	
Number of Processors	4Core(s) / 4Thread(s)	
Microcode Revision	17	++: Select Screen
		↑↓: Select Item
Total Memory	16384 MB	Enter: Select
Memory Data Rate	3200 MTPS	+/-: Change Opt.
		F1: General Help
PCH Information		F2: Previous Values
PCH SKU	MCC SKU O	F3: Optimized Defaults
Stepping	B1	F4: Save & Exit
		ESC: Exit
System Date	[Tue 10/10/2023]	
System Time	[15:04:03]	

(実際の表示と異なる場合があります。)

1. メニュー一覧

■ Mainメニュー

システムの基本構成を確認することができます。また、言語や日時の設定を行います。

■Advancedメニュー

ご使用のシステムに設定可能な詳細機能の設定を行います。

■Chipsetメニュー

ご使用のシステムに設定可能な詳細機能の設定を行います。

■Securityメニュー

システムのセキュリティを守るパスワードの設定を行います。

■Bootメニュー

システムのブートに関する設定を行います。

■Save & Exitメニュー

セットアップ設定項目のロード/セーブや、セットアップメニューの終了を行います。

2. Mainメニュー

「Main」メニューでは、システムの基本設定を行います。

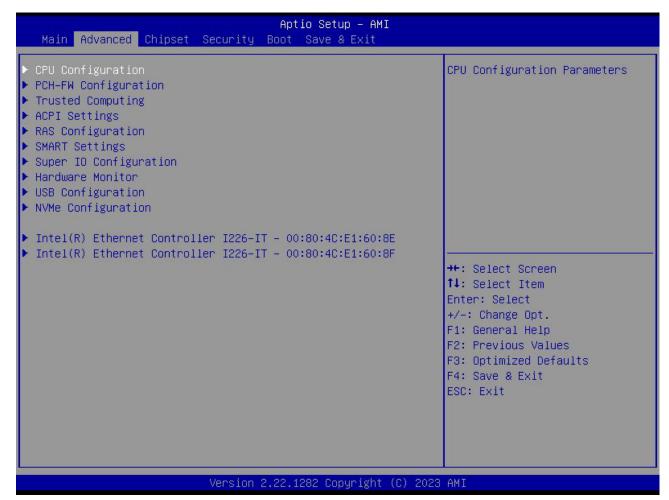
設定項目は、次のとおりです。

(実際の表示と異なる場合があります。)

システムの基本構成を確認することができます。表示されるのは下記項目です。

メインメニューの表示項目

項目	一般的な表示	説明
Project Version	BXT310C x.xx x64	BIOSのバージョンを表示します。
Build Data and Time	xx/xx/xxxx xx:xx:xx	BIOSの作成日を表示します。


下記の項目について設定することができます。

メインメニューの選択肢

項目	オプション	説明
System Date	Week Day Month / Day / Year	システムのカレンダーを設定します。 曜日は自動的に設定されます。
System Time	Hour : Minute : Second	システムの時刻を設定します。

3. Advancedメニュー

「Advanced」メニューでは、CPUやマザーボード上のデバイスの設定を行います。 設定項目は、次のとおりです。

■ CPU Configuration

CPUの設定を行えます。

■ PCH-FW Configuration

Intel MEのファームウェアバージョンを確認できます。

■ Trusted Computing

TPM2.0の設定を行えます。

■ ACPI Settings

ACPIの設定を行えます。

■ RAS Configuration

RASの設定を行えます。

■ SMART Settings

SMARTに関しての設定を行えます。

■ Super IO Configuration

Super IOに関しての設定を行えます。

■ Hardware Monitor

温度や電圧を確認することができます。

■ USB Configuration

USBに関しての設定を行えます。

■ NVMe Configuration

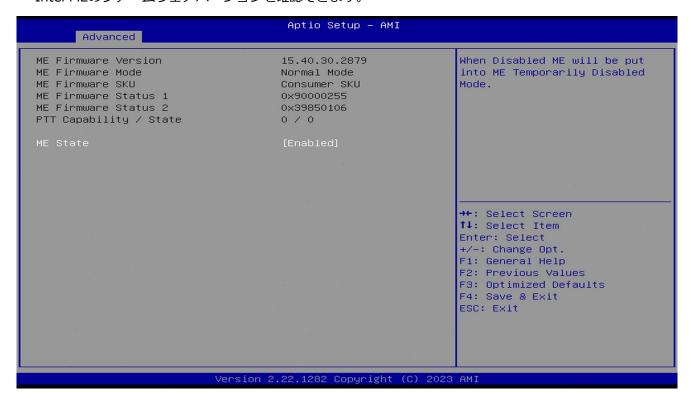
NVMeに関しての設定を行えます。

■Intel(R) Ethernet Controller

イーサネットコントローラーのMACアドレスなどを確認できます。

♦ CPU Configuration

CPUの設定を確認できます。


CPU Configuration		When enabled, a VMM can
Type ID Speed L1 Data Cache L1 Instruction Cache L2 Cache L3 Cache L4 Cache VMX SMX/TXT	Intel Atom(R) x6413E Processor @ 1.50GHz 0x90661 1500 MHz 32 KB x 4 32 KB x 4 1536 KB x 4 4 MB N/A Supported Not Supported	hardware capabilities provided by Vanderpool Technology.
Intel (VMX) Virtualization Technology Active Processor Cores Boot performance mode Intel(R) SpeedStep(tm) Intel(R) Speed Shift Technology	[Enabled] [All] [Max Non–Turbo Performance] [Disabled]	<pre>→+: Select Screen ↑↓: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit</pre>

CPU Configuration

項目	オプション	説明
Intel (VMX) Virtualization Technology	Disabled / Enabled	VMXの有効/無効を切り替えることができ ます。
Active Processor Cores	All / 1 / 2 / 3	CPUのコア数を変更することができます。
Boot performance mode	Max Bettery / Max Non-Turbo Performance / Turbo Performance	設定を変更しないでください。
Intel(R) SpeedStep(tm)	Disabled / Enabled	設定を変更しないでください。
Intel(R) Speed Shift Technology	Disabled / Enabled	設定を変更しないでください。

♦ PCH-FW Configuration

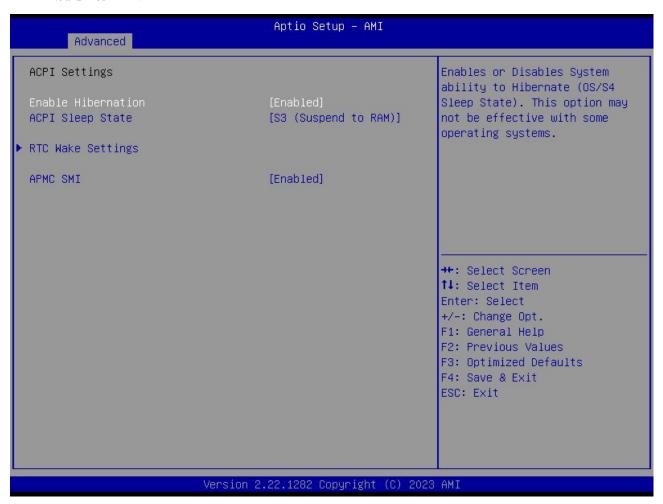
Intel MEのファームウェアバージョンを確認できます。

PCH-FW Configuration

項目	オプション	説明
ME State	Disabled / Enabled	設定を変更しないでください。

♦ Trusted Computing

TPMの設定を行います。


		T T
TPM 2.0 Device Found Firmware Version: Vendor: Security Device Support Active PCR banks Available PCR banks	13.11 IFX [Enable] SHA256 SHA256	Enables or Disables BIOS support for security device. O.S. will not show Security Device. TCG EFI protocol and INT1A interface will not be available.
Pending operation Platform Hierarchy Storage Hierarchy Endorsement Hierarchy Physical Presence Spec Version TPM 2.0 InterfaceType Device Select Disable Block Sid	[Enabled] [None] [Enabled] [Enabled] [1.3] [TIS] [Auto] [Disabled]	<pre>++: Select Screen f1: Select Item Enter: Select +/-: Change Opt. F1: General Help F2: Previous Values F3: Optimized Defaults F4: Save & Exit ESC: Exit</pre>

Trusted Computing

項目	オプション	説明
Security Device Support	Disabled / Enabled	TPM 2.0の有効/無効を切り替えることができます。
Pending operation	None / TPM Clear	TPM2.0がEnable時のみ設定できます。TPMを再初期化する場合にTPM Clearを選択します。TPMは再起動後に再初期化されます。
ほかの項目		設定を変更しないでください。

♦ ACPI Settings

ACPIの設定を行います。

ACPI Settings

項目	オプション	説明
Enable Hibernation	Disabled / Enabled	ハイバネーションの設定を行えます。
ACPI Sleep State	Suspend Disabled / S3 (Suspend to RAM)	Sleep Stateの設定を行えます。
APMC SMI	Disabled / Enabled	DisabledにするとOS上のソフトウェアSMIを禁止することができます。ソフトウェアSMIは遅延要因となるため、リアルタイム性を高めるために無効化することがあります。

RTC Wake Settings

項目	オプション	説明
Wake system from S5	Disabled / Enabled	時間指定での自動電源ON機能の設定を行えます。

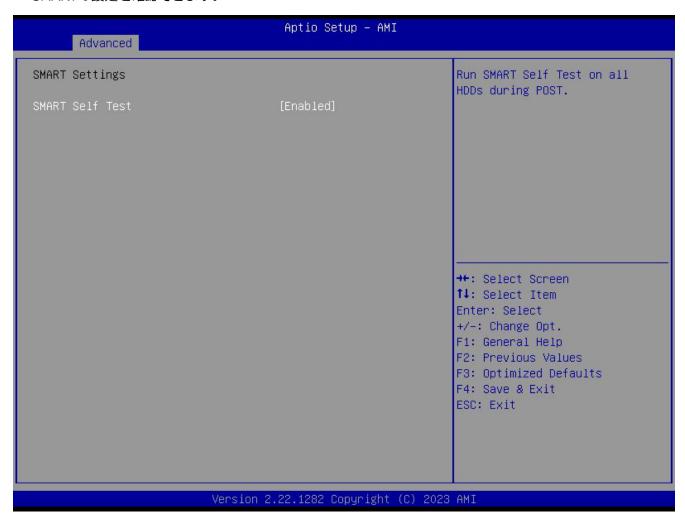
Wake system from S5 (Enabled時のみ有効)

項目	オプション	説明
RTC Wake up day	0 - 31	自動電源ONする日を設定します。 Oに設定した場合、毎日電源ONを行います。
RTC Wake up hour	0 - 23	自動電源ONする時を設定します。
RTC Wake up minute	0 - 59	自動電源ONする分を設定します。
RTC Wake up second	0 - 59	自動電源ONする秒を設定します。

◆ RAS Configuration

RASの設定を確認できます。

RAS Configuration


項目	オプション	説明
Auto Recovery	Disabled / Enabled	BIOS起動時にフリーズするとリセットを行う 自動復帰機能を設定できます。通常はEnabled でご使用ください。
WDT during Boot of OS	Disabled / Enabled	OS起動時のWDT機能の設定を行えます。

WDT during Boot of OS(Enabled時のみ有効)

項目	オプション	説明
WDT Value (Seconds)	1 - 255	WDTの秒数を設定できます。

♦ SMART Settings

SMARTの設定を確認できます。

SMART Settings

項目	オプション	説明
SMART Self Test	Disabled / Enabled	POST中にSATAデバイスにSMART Self Testを 行います。

♦ Super IO Configuration

Super IOの設定を行えます。

Super IO Configuration

項目	説明
Serial Port 1 Configuration	シリアルポート1の動作設定を行えます。
Serial Port 2 Configuration	シリアルポート2の動作設定を行えます。
Digital I/O Configuration	デジタルI/Oの初期値設定を行えます。

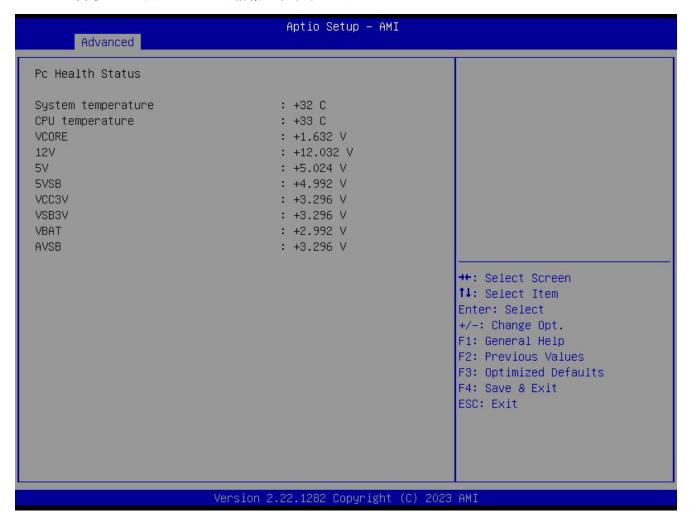
Serial Port 1 Configuration

項目	オプション	説明
Serial Port	Disabled / Enabled	シリアルポート1の動作設定を行えます。
Mode select	RS-232 / RS-485 / RS-422	シリアルポート1の通信モードの設定を行えます。
RS-422/485 Terminator Control	Disabled / Enabled	RS-422/485の終端抵抗の有無を設定します Mode selectがRS-422またはRS-485の際のみ 設定可能です。
RS485 Auto Flow Control	Disabled / Enabled	RS-485は半二重通信であるため、送信と受信が同じピンに割り当てられており、RTSのhigh/lowで制御してやる必要があります。本項目をEnabledにすることにより、ソフトウェ

BX-T310 シリーズ リファレンスマニュアル

項目	オプション	説明
		アで制御しなくても、ハードウェアで自動的に 制御することができます。 Mode selectがRS-485の際のみ設定可能で す。 下記いずれかの構成でのみ動作します。 8bits data + 1bit parity + 1bit stop 8bits data + 1bit parity + 2bits stop 8bits data + 2bits stop

Serial Port 2 Configuration


項目	オプション	説明
Serial Port	Disabled / Enabled	シリアルポート2の動作設定を行えます。

Digital I/O Configuration

項目	オプション	説明
Digital I/O Pin 0 Digital I/O Pin 1 Digital I/O Pin 2 Digital I/O Pin 3 Digital I/O Pin 4 Digital I/O Pin 5	Input / Output High / Output Low	汎用入出力の方向(入力/出力)の設定および、 出力使用時に起動時の出力レベル(High/Low) 設定を行えます。BIOSの初期化が終わるまで の値は不定となります。 Input:汎用入力として使用できます。 Output High:汎用出力として使用できます。 Output Low:汎用出力として使用できます。

♦ Hardware Monitor

CPU温度等のハードウェアモニタ情報を確認できます。

(実際の表示と異なる場合があります。)

♦ USB Configuration

USBの設定を行います。

USB Configuration

項目	オプション	説明
USB Mass Storage Driver Support	Disabled / Enabled	USBストレージのサポートを設定します。
USB Powerdown on S5	Disabled / Enabled	OSシャットダウン後、S5ステートに入ったときのUSB電源(5V)の状態を設定できます。デフォルトはDisabledで、S5ステートに入ってもUSB電源(5V)は入ったままです。Enabledにすることで、S5ステートに入ったときにUSB電源(5V)をOFFにすることができます。
USB Powerdown on OS	Disabled / Enabled	Enabledにすると、OS起動後にUSB電源(5V) をOFFにすることができ、USBアクセスできな いセキュアなシステムを構築できます。
ほかの項目		設定を変更しないでください。

USB Boot Protection

項目	オプション	説明
USB Boot Protect on BIOS / OS	Disabled / Enabled	Enabledを選択すると、その時点で接続されているUSBデバイスの情報をNVRAM内に記憶します。BIOSセットアップメニューまたはOSに入る際、記憶した情報と実際に接続されているUSBデバイス情報を照合し、一致しない場合は処理を停止します。
Vendor / Product / S/N	Disabled / Enabled	照合する際、どのUSB情報を使用するか選択できます。 Vendor:ベンダ名を照合します。 Product:製品名を照合します。 S/N:シリアルナンバーを照合します。
USB Devine name (Vendor name)	Disabled / Ignored / Enabled / Master	NVRAMに記憶されているデバイス毎に、照合の対象とするかどうかを設定できます。 Enabled:照合の対象とします。 Disabled:照合の対象としません。※このデバイスが確認された場合は不一致となります。 Ignored:このデバイスが確認されてもされなくても照合をパスします。 Master:このデバイスが検出されると、ほかのUSBデバイスの状態にかかわらず、必ず照合をパスします。登録デバイスの紛失や故障に備えて緊急ログイン用のマスターとしてデバイスを登録しておくと便利です。

企注意

登録したUSBの構成は忘れないように注意してください。復帰できなくなった際は、当社テクニカルサポートセンターにご相談ください。

♦ NVMe Configuration

NVMeの設定を行えます。

NVMe Configuration

項目	オプション	説明
Write Protect	Disabled / Enabled	NVMeにハードウェアライトプロテクトをかけることができます。本製品がサポートしているNVMeの使用時のみ設定可能です。

◆ Intel(R) Ethernet Controller

イーサネットコントローラーのMACアドレスなどを確認できます。

(実際の表示と異なる場合があります。)

4. Chipsetメニュー

チップセットの詳細機能を設定することができます。下記の項目があります。

■ System Agent (SA) Configuration


System Agentの設定を確認できます。

■ PCH-IO Configuration

PCH-IOの設定を行えます。

System Agent (SA) Configuration

System Agentの設定を確認できます。

(実際の表示と異なる場合があります。)

♦ PCH-IO Configuration

PCH-IOの設定を行います。

PCH-IO Configuration

項目	オプション	説明
Wake on LAN	Disabled / Enabled	LAN A,BについてWake On LANの設定を行えます。
Wake on RI (COM1)	Disabled / Enabled	COM 1についてWake On RIの設定を行えます。 Mode SelectでRS-232を選択している際のみ使用可能です。
Wake on RI (COM2)	Disabled / Enabled	COM 2についてWake On RIの設定を行えます。
Restore AC Power Loss	Power On / Power Off / Last State	電源供給開始時にシステム起動を連動させるかを設定します。 Power ON: 電源供給開始時にシステム起動します。 Power OFF: Powerボタンを押すと、システム起動します。 電源供給開始時には起動しません。 Last State: システム起動状態で電源を切ると、次回の電源 供給開始時にシステム起動します。
BIOS Lock	Enabled / Disabled	BIOSロックの動作設定を行えます。有効にすることでBIOSの書き換えを禁止することがで

項目	オプション	説明
		きます。

SATA Configuration

項目	オプション	説明
SATA Controller(s)	Disabled / Enabled	SATAの設定を行えます。
Port 1	Disabled / Enabled	CFastの設定を行えます。
Write Protect	Disabled / Enabled	各PortのSSDにそれぞれハードウェアライトプロテクトをかけることができます。本製品がサポートしているSSDの使用時のみ設定可能です。

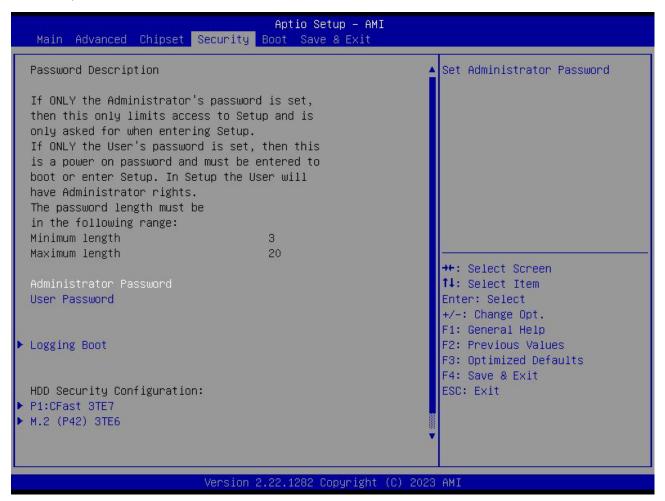
HD Audio Configuration

項目	オプション	説明
HD-Audio Support	Disabled / Enabled	HD Audioの設定を行えます。

LAN Configuration

項目	オプション	説明
Onboard LAN A/B Controller	Disabled / Enabled	LANの設定を行えます。
Network Stack	Disabled / Enabled	UEFI上のネットワーク機能を設定します。

Network Stack (Enabled時のみ有効)


項目	オプション	説明
Ipv4 PXE Support	Disabled / Enabled	IPv4のPXEを設定します。
Ipv4 HTTP Support	Disabled / Enabled	IPv4のHTTPを設定します。

Ipv4 PXE/HTTP Support (Enabled時のみ有効)

項目	オプション	説明
Ipv4 Address 0-3	119716811	PXEブートでCONTEC製ツールを起動した際アクセスするIPv4アドレスを設定します。

5. Securityメニュー

「Security」メニューでは、システムのセキュリティ設定を行います。設定項目は、次のとおりです。

(実際の表示と異なる場合があります。)

■ Administrator Password

Administrator Passwordを設定することができます。

Enterキーを押すと、下記のようにパスワードの入力を要求されます。

Administrator Password		
Create New Password	[****]
Confirm New Password	[****]

3文字以上のパスワードを2回入力してください。

パスワードを無効にするためには、再度Administrator Passwordの入力画面に入ってください。

■ User Password

User Passwordを設定することができます。

Enterキーを押すと、下記のようにパスワードの入力を要求されます。

User Password		
Create New Password	[****]
Confirm New Password	[****]

3文字以上のパスワードを2回入力してください。

パスワードを無効にするためには、再度User Passwordの入力画面に入ってください。

■ Logging Boot

起動時にシステムの健康状態をUSBメモリに保存することができます。

■ Secure Boot

Secure Bootの設定を行えます。

企注意

パスワードは忘れないように注意してください。パスワードを忘れると、BIOSの設定変更や設定によってはWindowsの起動ができなくなります。パスワードを忘れた場合は、有償修理が必要です。

♦ Secure Boot

Secure Bootの設定を行えます。

Secure Boot

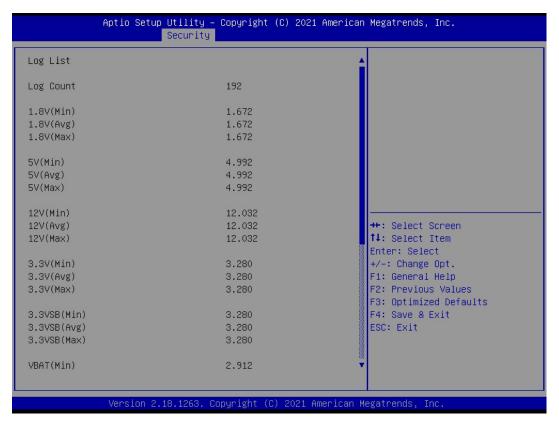
項目	オプション	説明
Secure Boot Enable	Disabled / Enabled	有効化することにより、Windowsおよびコンテックで認証されたUEFI APP以外の起動・実行を防ぐことができ、セキュアなシステム構築をすることができます。

♦ Logging Boot

Logging Bootを設定することができます。

設定することで、起動時に自己診断のログをUSBメモリに保存することができます。USBメモリは、FAT32フォーマットされている必要があります。ログは、.csv形式で保存されます。

保存されるタイミングは、「毎回起動時」「毎日の初回起動時」「毎月の指定日」から選ぶことができます。保存される量は512個で、それ以上になると古いものから消去されます。保存されるものは、電圧・温度・SSDの消去回数・SSDの稼働時間・日時です。



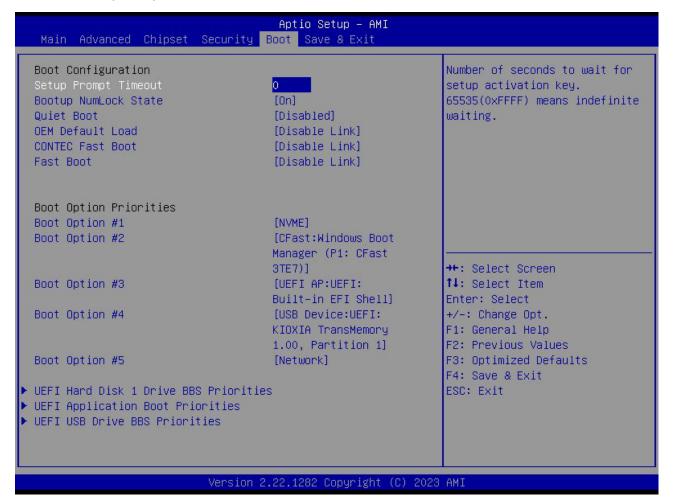
Logging Boot

項目	オプション	説明
Save Log to USB as .csv	Disabled / Enabled	機能を有効化するとともに、接続されている USBメモリを保存先として設定します。USBメ モリは最初に見つかったものを1つのみ設定し ますので、本設定時はPCに1つのUSBメモリの みを挿してください
Log Timing	Always / Everyday / Everymonth	「Always」を選択すると、毎回起動時にログを保存します。 「Everyday」を選択すると、毎日の初回起動時にログを保存します。 「Everymonth」を選択すると日にちを指定できるようになり、毎月の指定日の初回起動時にログを保存します。

項目	オプション	説明
Clear Log Boot Count	Disabled / Enabled	過去に保存されたログを削除することができます。

Log Listメニューより、NVRAMに保存されている値を閲覧することができます。

(実際の表示と異なる場合があります。)


データは下記のような.csvファイルとしてUSBメモリに保存されます。

1	A	В	C	D	E	F	G	Н	1	J	K	L	M	N
1	COUNT	1.8V	5V	12V	3VS	3V	BAT	CPUTEME	SYSTEMF	ERASE(M	ERASE(CI	TIME(M.2	TIME(CFa	DATE
2	(1.672	4.992	12.032	3.28	3.28	2.912	30	30	1	0	10	0	2021/8/26 9:53
3	1	1.672	4.992	12.032	3.28	3.28	2.912	30	30	1	0	10	0	2021/8/27 9:56
4	2	1.672	4.992	12.032	3.28	3.28	2.912	31	31	1	0	10	0	2021/8/28 10:00
5	3	1.672	4.992	12.032	3.28	3.28	2.912	31	31	1	0	10	0	2021/8/28 10:02
6	4	1.672	4.992	12.032	3.28	3.28	2.912	31	31	1	0	10	0	2021/8/28 10:02
7	5	1.672	4.992	12.032	3.28	3.28	2.912	31	32	1	0	10	0	2021/8/28 10:03
8	(1.672	4.992	12.032	3.28	3.28	2.912	31	32	1	0	10	0	2021/8/28 10:03

(実際の表示と異なる場合があります。)

6. Bootメニュー

システムの起動(BOOT)に関する設定を行います。設定項目は、次のとおりです。

(実際の表示と異なる場合があります。)

Boot

Boot		
項目	オプション	説明
Setup Prompt Timeout	0	BIOS Setupの <f2>の入力待機時間を 設定できます。 単位: [秒]</f2>
Bootup NumLock State	On / Off	システム起動時のNumLock状態を設定できま す。
Quiet Boot	Disabled / Enabled	設定を変更しないでください。
OEM Default Load	Disabled / Enabled	CONTEC製ツールでBIOS更新した際、OEMの 初期値を設定することができます。本メニュー 有効時は、Default Loadした際、OEM初期値 が読み出されます。
CONTEC Fast Boot	Disabled / Enabled	起動を高速化することができます。本機能有効時、CSME・TPM・Network Stack・SMART Self Testは使えなくなります。
Fast Boot	Disabled / Enabled	設定を変更しないでください。
Boot Option #x	XXXXXXXX (任意のデバイスを指定)	接続されているデバイスの起動順序を設定できます。

7. Save & Exitメニュー

BIOSの設定を保存/復元して終了することができます。設定項目は、次のとおりです。

(実際の表示と異なる場合があります。)

■ Save Changes and Exit

設定値を保存して終了します。

再起動が必要な設定に変更されている場合は、再起動します。

■ Discard Changes and Exit

設定値を保存せずに終了します。

■ Save Changes and Reset

設定値を保存して再起動します。

■ Discard Changes and Reset

設定値を保存せずに再起動します。

■ Save Changes

設定値を保存します。

■ Discard Changes

設定値を保存しません。

■ Restore Defaults

設定値をデフォルトに戻します。

■ Save as User Defaults

変更した設定値をUser Defaultsとして保存できます。

■ Restore User Defaults

User Defaultsで保存した設定値に戻します。

■ Boot Override

Boot Configurationで設定した以外の接続デバイスから一時的に起動を行う場合に設定します。 ブート可能な接続デバイスが表示されます。

■ CONTEC Utility

UEFI環境上で動作するユーティリティーを使用できます。詳細および使用方法については次項を参照ください。

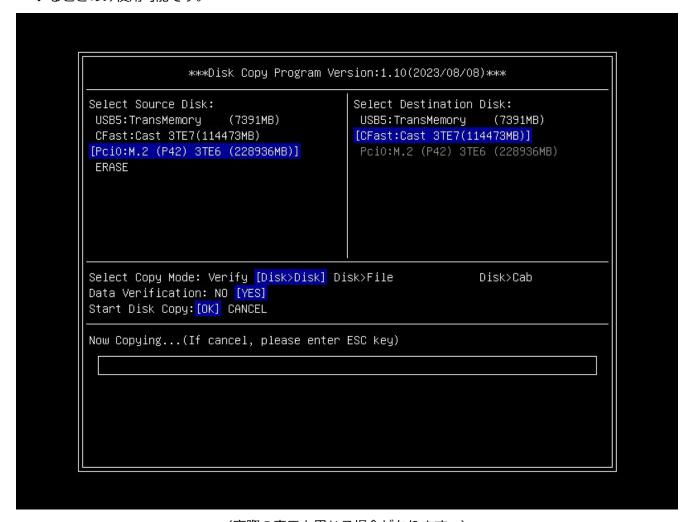
♦ CONTEC Utility

UEFI環境上で動作するユーティリティーを使用できます。 下記の項目があります。

■ Disk Copy

Diskをコピーしバックアップやリストアなどが行えます。

■ Memory Test


PASSMARK社のMemory Testを実行します。

■ Self Inspection

自己診断機能を実行します。

Disk Copy

Diskのバックアップおよびリストアなどを行うことができます。2つ以上のストレージデバイスを接続しているときのみ使用可能です。

(実際の表示と異なる場合があります。)

Disk Copy

項目	オプション	説明
Select Source Disk	USBx: xxx CFast:xxx Pci0:xxx Erase	接続されているUSB/SSDが表示されます。コピー元のディスクを選んでください。Erase選択時は、コピー先に選択したディスクの全領域を0x00で埋めます。
Select Destination Disk	USBx: xxx CFast:xxx Pci0:xxx	接続されているUSB/SSDが表示されます。コピー先のディスクを選んでください。
Select Copy Mode	Verify Disk to Disk Disk to File File to Disk Disk to Cab Cab to Disk	■Verify ディスク比較のみを行います。 ■Disk to Disk コピー元のディスクデータをコピー先のディスクに物理コピーします。コピーカのでイスクでカをコピー先のディスクでカをコピーがでは、小さい方のディスクであります。 ■Disk to File コピースクが一タをコピー先のディスクにカー大のディスクになります。ファイルは、でのおとは、メ(xは連番)という名前で保存されます。コピー元のディスクのものになります。コピー先のディスクに対します。コピーカのディスクは手AT32フォーマリしていなくてもをでいる必要があります。コピーカのディスクのファイルデータをコピールは、でのおと、x(xは連番)という名前で保存スクはFAT32フォーマットされている必要があります。コピーが完了していなくても、カロピー元のディスクはFAT32フォーマットされている必要があります。コピーが完了していなくても、アイルは、でのでは連番)という名前で保存されます。コピー先のディスクは手AT32フォーマリーに変すると終了します。 ■Disk to Cabコピーカのディスクは手AT32フォーマリーに変すると終了します。コピー先のディスクは手AT32フォーマリーになくても、コピー先があります。コピー先がディスクは手AT32フォーマリーに達すると終了します。プァイルは、でのには、x(xは連番)という名前で保存されている必要があります。コピーが完了していなくても、カロディスクはFAT32フォーマットされている必要があります。コピーが完了していると終了します。

項目	オプション	説明
Data Verification	No Yes	Yesを選択した場合、単位ブロックをコピーする毎に正しくコピーできているかデータ比較し、不一致が発生した場合はエラー終了します。コピーモードにて[Disk to Cab]および [Cab to Disk]が選択されている場合は利用できません。

△注意

- 容量が異なるディスク同士のDisk to Diskは小さい方のディスクの容量に合わせてコピーされるため、 そのままのOS起動は保証されません。Disk to Disk後にそのままOS起動させたい場合は、容量の等し いディスク同士でコピーを行うか、容量の大きなディスクにコピーしたのち元のディスクに書き戻して ください。
- バックアップ完了後は電源をOFFし一方のストレージを本体から取り外してください。

Self Inspection

自己診断を行うことができます。

(実際の表示と異なる場合があります。)

Self Inspection

項目	オプション	説明
PCI Device Activity	PASS FAIL	存在するべきPCIデバイスについて生存確認を 行います。全てのデバイスが存在している場合 は[PASS]を、1つでも存在が確認できなかった デバイスがある場合は[FAIL]を表示します。
PCIデバイス一覧	ACTIVE INACTV	存在するべきPCIデバイスについて生存確認を 行います。正しく存在している場合は [ACTIVE]を、存在が確認できなかった場合は [INACTV]を表示します。
LPC Device Activity	PASS FAIL	LPCデバイスについて動作確認を行います。全 てのデバイスが正しく存在している場合は [PASS]を、1つでも存在が確認できなかったデ バイスがある、またはリソースが不適当な場合 は、 [FAIL]を表示します。
нwм	ACTIVE INACTV	HWMについて生存確認を行います。正しく存在している場合は[ACTIVE]を、存在が確認できなかった場合は[INACTV]を表示します。
COM Address Check	PASS	COMのリソースについて、正しくアドレスが

項目	オプション	説明
	FAIL	設定されているか確認します。
COM IRQ Check	PASS FAIL	COMのリソースについて、正しくIRQが設定されているか確認します。
UARTx	xxx x/x/x	各COMのアドレスおよびIRQを表示します。
SSD Life	表示のみ	SATA Driveについて寿命情報を表示します。 正しく表示されるのは、本製品がサポートして いるSSDのみになります。
LAN EEPROM Check	PASS FAIL	LAN EEPROMが正しいデータか確認します。 LANデバイスが見つからなかった場合は、その デバイスについては判定できません。
CONTEC MAC	PASS FAIL	CONTECのMACデータが書かれているか確認 します。
Unique MAC	PASS FAIL	MACデータが実機内で個別のものになっているか確認します。
Good CS	PASS FAIL	チェックサムが正しいか確認します。
x MAC	xxxxxxxxxx	各ポートのMACデータを表示します。
x CS (0x00-0x3F)	xxxx	各ポートのチェックサムを表示します。
Temperature	MIN NOW MAX	CPU温度、システム温度について、自己診断プログラム動作中の最低値、最高値、現在値を表示します。
Voltage	MIN NOW MAX	各電圧について、自己診断プログラム動作中の 最低値、最高値、現在値を表示します。 5VSBおよびVNNは将来拡張用で、現在はサポ ートされていません。
Time	Now Elapsed	現在の時刻および自己診断プログラムが動作し た経過時間を表示します。
GPIO Info		GPIOの情報を表示します。
GPIO(0-5)	111111	GPIOピン0-5の信号レベルを表示します。
ROMCLR	OFF ON	ROMクリアスイッチの状態を表示します。
総合判定	PASS FAIL	PCI Device Activity, LPC Device Activity, LAN EEPROM Check全ての項目に合格してい ればPASSを、1つでも不合格があればFAILを 表示します。

付録

本製品の仕様や外形寸法、型式名の説明などについて説明しています。

1. システムリファレンス

1. 仕様

機能仕様

	項目	内容	
CPU		Intel Atom® x6413E Processor 1.5GHz	
BIOS		AMI製BIOS	
メモリ		BX-T310-J2xxx: 8GB(260ピンSO-DIMM)、PC4-25600 (DDR4-3200) BX-T310-J3xxx: 16GB(260ピンSO-DIMM)、PC4-25600 (DDR4-3200)	
グラフィッ	クコントローラ	Intel® UHD Graphics (CPUに内蔵)	
システム 解像度	DisplayPort	800×600, 1,024×768, 1,152×864, 1,280×600, 1,280×720, 1,280×768, 1,280×800, 1,280×960, 1,280×1,024, 1,360×768, 1,366×768, 1,400×1,050, 1,440×900, 1,600×900, 1,600×1,200, 1,680×1,050, 1,792×1,344, 1,856×1,392, 1,920×1,080, 1,920×1,200, 1,920×1,440, 1,920×2,160, 2,048×1,152, 2,048×1,536, 2,560×1,080, 2,560×1,440, 2,560×1,600, 2,560×1,920, 2,560×2,048, 3,840×2,160 , 4,096×2,160 (1,677万色)	
	アナログRGB	800×600, 1,024×768, 1,152×864, 1,280×600, 1,280×720, 1,280×768, 1,280×800, 1,280×960, 1,280×1,024, 1,360×768, 1,366×768, 1,400×1,050, 1,440×900, 1,600×900, 1,600×1,200, 1,680×1,050, 1,920×1,080, 1,920×1,200 (1,677万色)	
オーディオ		HD Audio準拠、ライン出力×1、マイク入力×1	
M.2カード	スロット	1スロット、M.2 2242 Key B、PCIe(x1) Gen3 1ポート BX-T310-Jx4xx: M.2 NVMe実装済み (TLC、256GB、1パーティション) ※1 BX-T310-Jx6xx: M.2 NVMe実装済み (TLC、1TB、1パーティション) ※1 1スロット、M.2 2230/2280、Key E、PCIe(x1) Gen3 1ポート、USB2.0 1ポート	
		BX-T310-Jxx25: M.2 無線LANカード実装済み	
CFastカー	ドスロット	1スロット、CFast CARD Type I、ブート可能	
LAN		Intel® I226コントローラ	
		2.5GBASE-T/1000BASE-T/100BASE-TX/10BASE-T RJ-45コネクタ (Wake On LAN対応) 2ポート	
USB		USB 3.2 Gen2 (USB3.1)準拠 2ポート USB 2.0準拠 4ポート	
シリアル		RS-232C/422/485 1ポート、RS-232C 1ポート ボーレート: 50 - 115,200bps	
無線LAN ※3		IEEE 802.11ac/a/b/g/n	
汎用入出力		非絶縁型 入出力6点、POWERスイッチ信号	
セキュリティ(TPM)		TCG TPM2.0	
ハードウェ	アモニタ	CPU温度、ボード温度、電源電圧の監視	
ウォッチドッグタイマ (WDT)		ソフトウェアプログラマブル、255レベル(1 - 255秒)、 タイムアップ時にリセット	
リアルタイ	ムクロック	リチウム電池バックアップ 電池寿命: 10年以上 ※2 RTC精度(25℃): ±3分/月(CPU内蔵RTC)	

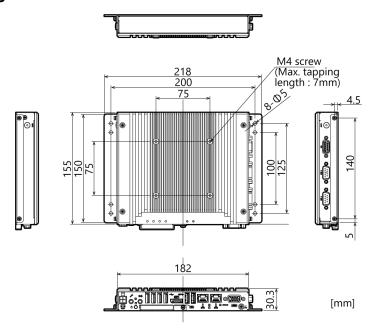
F	項目	内容
パワーマネ	ニージメント	BIOSによるパワーマネージメント設定 Power On by Ring/Wake On LAN機能 ACPI パワーマネージメントサポート
インター	ディスプレイ	DisplayPort(v1.4)×1、アナログRGB×1
フェイス	オーディオ	ライン出力: 3.5¢ステレオミニジャック マイク入力: 3.5¢ステレオミニジャック
	M.2カード スロット	1スロット、M.2 2242、Key M 1スロット、M.2 2230/2280、Key E
	CFastカード スロット	1スロット、CFast CARD Type I
	LAN	2ポート(RJ-45コネクタ)
	USB	USB3.2 Gen2 (USB3.1)準拠 2ポート(Type-Aコネクタ) USB2.0準拠 4ポート(Type-Aコネクタ)
	RS-232C/422 /485	1ポート(9ピン D-SUBコネクタ[オス])
	RS-232C	1ポート(9ピン D-SUBコネクタ[オス])
	DIO	1ポート(9ピン D-SUBコネクタ[メス])
電源	定格入力電圧	12 - 24VDC±10% ※4
	入力電圧範囲	10.8 - 31.2VDC
	消費電力	12V 3.5A(Max.)、24V 1.8A(Max.)
	外部機器 供給電源容量	M.2スロット Key M: +3.3V: 2.5A(2,500mA×1) M.2スロット Key E: +3.3V: 2.0A(2,000mA×1) CFastカードスロット: +3.3V 0.5A(500mA×1) USB3.2 Gen2 (USB3.1) I/F: +5V: 1.8A(1ポート当り900mA×2) USB2.0 I/F: +5V: 2.0A (1ポート当り500mA×4)
外形寸法 (mm)	182(W)×155(D)×30.3(H) (取り付け金具部、突起物を含まず)
質量		約1.3kg (取り付け金具を含まず)

- ※1 OSプレインストールモデルの記憶装置の容量は、1GBを10億Byteで計算した場合の値です。 OSから認識できる容量は、実際の値より少なく表示される場合があります。
- ※2 無通電時間が16時間/日の場合です。
- ※3無線LANは無線モデルのみ搭載です。
- ※4 電源ケーブルは3m以下を使用してください。

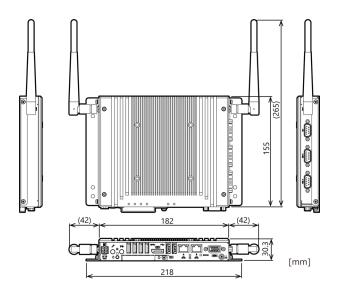
環境仕様

Į	頁目	内容	
使用周囲温度	₹ ※5	-20 - +50℃ エアフローなし -20 - +60℃ エアフロー 0.7m/s	
保存周囲温度	₹ ※5	-20 - +60℃	
周囲湿度		10 - 90%RH (ただし、結露しないこと)	
浮遊粉塵		特にひどくないこと	
腐食性ガス		ないこと	
耐ノイズ性	ラインノイズ	ACライン/±2kV ※6、信号ライン/±1kV (IEC61000-4-4 Level 3、EN61000-4-4 Level 3)	
	静電耐久	接触放電: ±4kV(IEC61000-4-2 Level 2、EN61000-4-2 Level 2) 気中放電: ±8kV(IEC61000-4-2 Level 3、EN61000-4-2 Level 3)	
耐振動性	掃引耐久	10 - 57Hz/片振幅0.375 mm 57 - 150Hz/5.0G X、Y、Z方向 各60分(JIS C 60068-2-6準拠、IEC 60068-2-6準拠)	
耐衝撃性		100G X、Y、Z方向6ms正弦半波(JIS C 60068-2-27、IEC 60068-2-27準拠)	
接地		D種接地(旧第3種接地)、SG-FG/導通	
規格		VCCI クラスA、FCC クラスA、 CEマーキング(EMC指令クラスA、RoHS指令) ※7※8、UKCA ※7※8、 TELEC(認証済みの無線モジュールを搭載) ※9、 UL/c-UL ※7、CCC ※10	

- ※5 オーディオを使用する場合は0℃以上の環境で使用・保存ください。
- ※6 ACアダプタPWA-65AWD1を使用した場合です。
- ※7 無線モデルは、CEマーキング、UKCA、c-ULの対象外になります。
- ※8 LANケーブルはシールド品を使用ください。
- ※9 無線モジュールは無線モデルのみに搭載しております。
- ※10 ベースモデルおよび無線モデルはCCC認証対象外になります。


2. 電力管理機能

ACPI (Advanced Configuration and Power Interface)をサポートします。


- ACPI v2.0対応
- ハードウェアの自動ウェイクアップに対応

2. 外形寸法

BX-T310-Jxxx0

BX-T310-Jxxx5

3. POSTコード

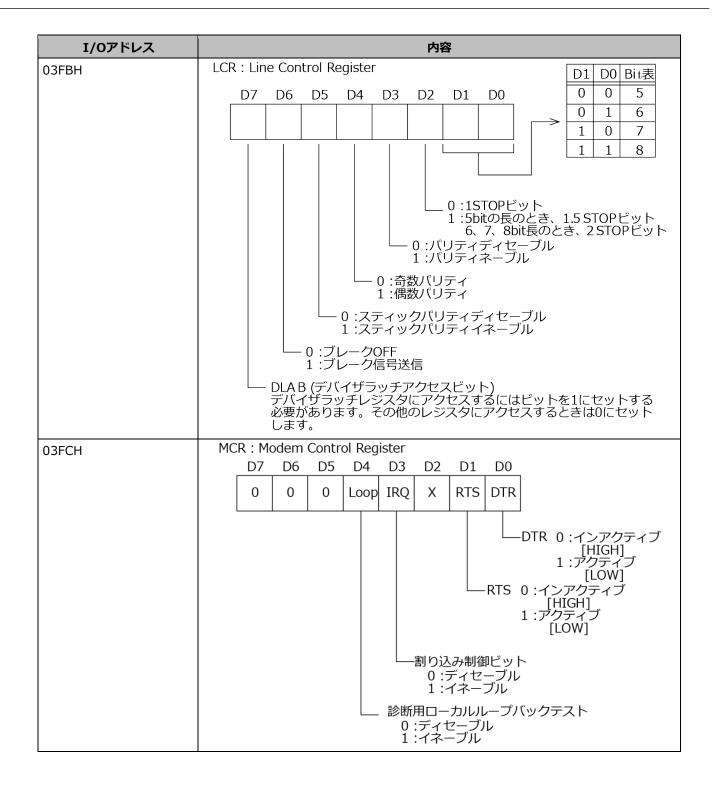
Security (SEC) phase >	POST (hex)	説明
2h マイクロコード読み込み前のノスブリッジの初期化 4h マイクロコード読み込み前のプウスブリッジの初期化 5h マイクロコード読み込み前のプウスブリッジの初期化 6h マイクロコード読み込み前ののEMの初期化 7h マイクロコード読み込み後のAPの初期化 8h マイクロコード読み込み後のプレスブリッジの初期化 9h マイクロコード読み込み後のプレスブリッジの初期化 Ah マイクロコード読み込み後のOEMの初期化 Bh キャッシュ初期化 < Pre-EFI Initialization (PEI) phase > 10h PEIコアの開始 11h プリメモリアの開始 12h - 14h プリメモリアのプリッジ初期化(PUモジュール固有) 15h プリメモリ ノースプリッジ初期化(アロミュール固有) 16h - 18h プリメモリ プリスブリッジ初期化(サウスブリッジ モジュール固有) 19h プリメモリ プリスブリッジ初期化(サウスブリッジ サラス・リカリア・リカリア・リカリア・リカリア・リカリア・リカリア・リカリア・リカリ	< Security (SEC)	phase >
Sh マイクロコード読み込み前のサウスブリッジの初期化	1h	電源オン。リセット種類(ハード/ソフト)の検出
### マイクロコード読み込み前のOEMの初期化 Sh マイクロコード読み込み前のOEMの初期化 Sh マイクロコード読み込みのAPのの期間化 Sh マイクロコード読み込み後のAPの初期化 Sh マイクロコード読み込み後のメアブリッジの初期化 Sh マイクロコード読み込み後のメアブリッジの初期化 Sh マイクロコード読み込み後のメアブリッジの初期化 Sh マイクロコード読み込み後のアブリッジの初期化 Ah マイクロコード読み込み後のOEMの初期化 Sh キャッシュ初期化 マイクロコード読み込み後のOEMの初期化 Sh キャッシュ初期化 Sh キャッシュ初期化 Sh キャッシュ初期化 Sh キャッシュ初期化 Sh オーソンモリCPU初期化を開始 12h - 14h ブリメモリCPU初期化を開始 12h - 14h ブリメモリプリッジ初期化を開始 15h ブリメモリ プリスブリッジ初期化を開始 16h - 18h ブリメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 15h ブリメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 19h ブリメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 10h - 2Ah OEM ブリメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 10h - 2Ah OEM ブリメモリ サウスブリッジ 初期化 (プロスブリッジ モジュール固有) 10h - 2Ah OEM ブリメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 2Dh - 2Au 初期化: メモリ初期化: メモリタイミング情報のプログラミング 2Eh メモリ初期化: そしタイミング情報のプログラミング 2Eh メモリ初期化: そしり名に対している参照) 31h メモリインストール済み コンド・ストリカリアに (PUポストメモリ初期化で) コンドントランプロセッサ(BSP)の選択 コンド・ストメモリ ファンブリカリア モジュール固有) 35h CPU ポストメモリ初期化: キャッシュの初期化で開始 コンド・ストメモリ サウスブリッジ 初期化(プロスブリッジ モジュール固有) 38h ポストメモリ ノースブリッジ 初期化(プロスブリッジ モジュール固有) 38h ポストメモリ プロスブリッジ 初期化で 同始 コンド・スアリン・コン 初期化で 日本プリッジ 可用に付りスブリッジ モジュール回有 コンド・スアリッジのボストメモリ 切りにサウスブリッジ 初期化(プロスブリッジ モジュール固有) 5h CPU アストメモリ が開化コード ロンド アスブリッジ のがに付りスブリッジ モジュール回摘 (CPU アスアリッジのアンストール) 同間的 CPU アスブリッジのアストールの関始 CPU アスアリッジのアストールの関始 CPU アスアリッジのアスアストールの関始 CPU アスアスアリッジのアスアスアスアスアスアスアスアスアスアスアスアスアスアスアスアスアスアスアス	2h	
Sh マイクロコトに読み込み前のOEMの初期化 マイクロコトに読み込み後のAPの初期化 マイクロコトに読み込み後のAPの初期化 タイクロコトに読み込み後のJースブリッジの初期化 タイクロコトに読み込み後のグースブリッジの初期化 タイクロコトに読み込み後のグースブリッジの初期化 オイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに読み込み後のでMの初期化 スイクロコトに表か込み後のでMの初期化 スイクロコトに表が込み後のでMの初期化 スイクロコトに表が込み後のでMの初期化 スイクロコトに表が込み後のでMの初期化 スイクロコトに表が込み後のでMの初期化 スリンモリアの開始 スリンモリアの開始 スリンモリアの開始 スリンモリアの開始 スリンモリアの開始 スリンモリアの開始 スリンモリアのアの開かに表間的 スリンエール回有 スリンエール スリンエール回有 スリンエール スリンエール スリンエール スリンエール スリンエール回有 スリンエール スリンエール スリンエール回有 ストンエーリ カリアンブリッジ 初期化を開始 ストンエーリ カリアンブリッジ 初期化で同始 ストンエール回有 ストンエーリ カリアンブリッジ 初期化で一下 ストンエーリの配動 ストンエーリの配動 ストンエール回有 ストンエーリの配動 ストンエール回有 ストンエールの同始 スリンエール回有 スリンエールの同始 スリンアンブリッジのシストール スリンアンフトールの開始 スリンアンフトールの開始 スリンアンフトールの開始 スリンフリッジのアンストール スリンアンフトールの開始 ストンストールの開始 ストンストールの開始 ストンスアールの同始 スースブリッジのどのの知知化を開始 スースブリッジのどのの知知化を開始 スースブリッジのどのの知知化を開始 スリンアンアンアンのアンストール スリンアンアンアントール スリンアンアンアンアンアンアール スリンアンアンアンアンアンアトール スリンアンアンアンアンアンアンアンアール スリンアンアンアンアンアンアンアンアンアンアンアンアンアンアンアンアンアンアンア	3h	
Sh	4h	マイクロコード読み込み前のサウスブリッジの初期化
7h マイクロコード読み込み後のAPの初期化 8h マイクロコード読み込み後のノスブリッジの初期化 9h マイクロコード読み込み後のノスブリッジの初期化 Ah マイクロコード読み込み後のOEMの初期化 Bh ギャッシュ初期化 6	5h	マイクロコード読み込み前のOEMの初期化
8h マイクロコード読み込み後のサウスブリッジの初期化 9h マイクロコード読み込み後ののEMの初期化 Ah マイクロコード読み込み後のOEMの初期化 Bh キャッシュ初期化 < Pre-EFI Initialization (PEI) phase > 10h PEIコアの開始 11h プリメモリCPU初期化を開始 12h・14h プリメモリ グースプリッシ初期化を開始 15h プリメモリ ノースプリッシ 初期化(ノースブリッジ モジュール固有) 19h プリメモリ サウスブリッシ 初期化(サウスブリッジ モジュール固有) 19h プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 10h - 2Ah OEM プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 10h - 2Ah OEM プリメモリ 砂カルド 2Bh メモリ初期化: メモリ初期化: メモリ検出 2Ch メモリ初期化: メモリ物期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: スール 30h ASLIE、を約済人(CPP/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: キャッシュの初期化 35h CPUポストメモリ初期化: チャンフリッジの財産(PSP)の適財 37h CPUポストメモリ初期化: アースブリッジのインフリッジのインフリッジでアプリッジス・アリカリス・アリッジス・アリカリス・アリッジス・アリカリス・アリッジス・アリカリス・アリッジス・アリカリス・アリッジス・アリカリス・アリカリス・アリカリス・アリッジス・アリカリス・アリカリス・アリッジス・アリカリス・アリッジス・アリカリス	6h	マイクロコード読み込み
9h マイクロコード読み込み後のPMの初期化 Ah マイクロコード読み込み後のOEMの初期化 Bh キャッシュ初期化 <	7h	マイクロコード読み込み後のAPの初期化
Ah マイクロコード読み込み後のOEMの初期化 Bh キャッシュ初期化	8h	マイクロコード読み込み後のノースブリッジの初期化
Bh キャッシュ初期化 < PFE-EFI Initialization (PEI) phase > 10h PEIコアの開始 11h プリメモリCPU 初期化と開始 15h プリメモリ ノースブリッジ初期化を開始 16h - 18h プリメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 19h プリメモリ サウスブリッジ 初期化を開始 1Ah - 1Ch プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Dh - 2Ah OEM プリメモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: キャッシュの初期化 33h CPU ポストメモリ初期化: トャッシュの初期化 35h CPU ポストメモリ初期化: トャッシュの初期化 35h CPU ポストメモリ初期化: トースプリッジの列期化を開始 37h CPU ポストメモリ サフスブリッジ 初期化(を開始 38h ポストメモリ ノースブリッジ初期化を開始 36h ポストメモリ プフスブリッジ 初期化(フースブリッジ モジュール固有) 37h - 4Eh OEMボストメモリ サウスブリッジ 初期化コード 4Fh DXE IPLの起動 4 Fh DXE IPLの起動 5 CPU DXEインストールの開始(CPUモジュール固有) 6 Ah CPU	9h	マイクロコード読み込み後のサウスブリッジの初期化
< Pre-EFI Initialization (PEI) phase > 10h PEIコアの開始 11h プリメモリCPUの関係と開始 12h - 14h プリメモリCPU 初期化(CPUモジュール固有) 15h プリメモリ ノースプリッジ 初期化を開始 16h - 18h プリメモリ サウスブリッジ 初期化(と同始 19h プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 19h プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Ah - 1Ch プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Dh - 2Ah OEM ブリメモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ機由 2Ch メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: キャッシュの初期化 34h CPUポストメモリ初期化: キャッシュの初期化 35h CPUポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ プースブリッジ初期化を開始 36h ・ ストメモリ サウスブリッジ 初期化(コード 4Fh DE IPLの起動 4Fh DE IPLの起動 6Dh DXE IPLの起動 60h DXE I	Ah	マイクロコード読み込み後のOEMの初期化
10h PEIコアの開始 11h ブリメモリCPU 初期化(CPUモジュール固有) 15h ブリメモリCPU 初期化(CPUモジュール固有) 15h ブリメモリ フースブリッジ初期化を開始 16h - 18h ブリメモリ サウスブリッジ 初期化(ノースブリッジ モジュール固有) 19h ブリメモリ サウスブリッジ 初期化で開始 10h - 10h ブリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 10h - 2Ah OEM プリメモリ初期化 こを開始 2Bh メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ初期化: メモリ機出 2Dh メモリ初期化: メモリタイミング情報のプログラミング 2Eh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: キャッシュの初期化 34h CPUポストメモリ初期化: キャッシュの初期化 35h CPUポストメモリ初期化: ナーストラッププロセッザ(BSP)の選択 37h CPUポストメモリ初期化: メーストラッププロセッザ(BSP)の選択 38h ボストメモリ リースプリッジ初期化を開始 37h	Bh	キャッシュ初期化
11h	< Pre-EFI Initiali	zation (PEI) phase >
12h - 14h プリメモリ ノースプリッジ初期化(を開始) 16h - 18h プリメモリ ノースプリッジ初期化を開始 19h プリメモリ サウスプリッジ初期化を開始 1Ah - 1Ch プリメモリ サウスプリッジ初期化を開始 1Ah - 1Ch プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Dh - 2Ah OEM プリメモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリを機出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPU ポストメモリ初期化: キャッシュの初期化 34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ初期化を開始 36h ボストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 37h - 4Eh OEMポストメモリ 初期化 37h - 4Fh OEMポストメモリ が期化を開始 37h - 7h CPU 立た リースプリッジ が見に使用の 38h ボストメモリ サウスプリッジ が見に使用の 37h - 4Fh OEMポストメモリ が見化	10h	PEIコアの開始
15h		
16h - 18h ブリメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 19h プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 10h - 2Ah OEM ブリメモリ 初期化 (サウスブリッジ モジュール固有) 10h - 2Ah OEM ブリメモリ初期化 : Namp (サウスブリッジ モジュール固有) 2Bh メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ校出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPL/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: キャッシュの初期化 33h CPUポストメモリ初期化: キャッシュの初期化 34h CPUポストメモリ初期化: ナートトラッププロセッサ(BSP)の選択 37h CPUポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ プレスブリッジ 初期化(プースブリッジ モジュール固有) 37h - 4Eh OEMボストメモリ がカルリード 4Fh DXE IPLの起動 60h DXE IPLの起動 61h NVRAM初期化 62h サウスブリッジのアの起動 64h - 67h CPU DXEインストールの開始 68h PCIホストプリッジの用のインストール	12h - 14h	
19h プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Ah - 1Ch プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Dh - 2Ah OEM プリメモリ初期化コード 2Bh メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Fh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 34h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPUポストメモリ初期化: ブートストラッププロセッザ(BSP)の選択 37h CPUポストメモリ初期化: ブートスプリッジ初期化を開始 39h ・3Ah ポストメモリ ノースプリッジ初期化を開始 39h ・3Ah ポストメモリ サウスプリッジ初期化を開始 36h ・ボストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 37h ・4Eh OEMポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 4Fh DXE IPの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストノブリッジのインストール 69h ノースブリッジの		
1Ah - 1Ch プリメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 1Dh - 2Ah OEM プリメモリ初期化コード 2Bh メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリタイミング情報のプログラミング 2Eh メモリ初期化: メモリを構成 2Fh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPU ポストメモリ初期化: キャッシュの初期化 34h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 38h ポストメモリ ノースブリッジ初期化を開始 36h ・ 3Eh ポストメモリ サウスブリッジ初期化を開始 37h ・ 4Eh OEMボストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 37h ・ 4Eh OEMボストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 37h ・ 4Eh DXE IPLの起動 4 ト ・ DXE IPLの起動 トクロシストールの開始(CPUモジュール固有) 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストプリッジのメンストール 69h ノースブリッジDXEの初期化を開始		
1Dh - 2Ah OEM プリメモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Eh メモリ初期化: メモリを構成 2Fh メモリ初期化: ターリを構成 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化き開始 33h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPUポストメモリ初期化: ブートストラップブロセッサ(BSP)の選択 37h CPUポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ初期化(フースブリッジ モジュール固有) 3Bh ボストメモリ サウスブリッジ初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMボストメモリ初期化コード 4Fh DXE IPLの起動 4 C Priver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストプリッジのメーシストール 69h ノースブリッジDXEの初期化を開始		
2Bh メモリ初期化: Serial Presence Detect(SPD)データ読み込み 2Ch メモリ初期化: メモリ検出 2Dh メモリ初期化: メモリを構成 2Eh メモリ初期化: メモリを構成 2Fh メモリ初期化: その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 34h CPUポストメモリ初期化: Management Mode(SMM)の初期化 35h CPUポストメモリ初期化: Jートストラッププロセッサ(BSP)の選択 37h CPUポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 38h ボストメモリ サウスブリッジ 初期化を開始 3Ch - 3Eh ボストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Cpriver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのアンストール 69h ノースブリッジDXEの初期化を開始 </td <td>_</td> <td>,</td>	_	,
2Ch メモリ初期化:メモリを付きング情報のプログラミング 2Eh メモリ初期化:メモリタイミング情報のプログラミング 2Eh メモリ初期化:メモリを構成 2Fh メモリ初期化:その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPUポストメモリ初期化:4 Application Processor(s)(AP)の初期化 35h CPUポストメモリ初期化:5 Application Processor(s)(AP)の初期化 35h CPUポストメモリ初期化:5 ystem Management Mode(SMM)の初期化 38h ポストメモリカスメモリ初期化:5 ystem Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ サウスブリッジ 初期化(ノースブリッジ モジュール固有) 38h ポストメモリ サウスブリッジ 初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 4Ch DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのアンストール 69h ノースブリッジDXEの初期化を開始	1Dh - 2Ah	
2Dh メモリ初期化:メモリタイミング情報のプログラミング 2Eh メモリ初期化:メモリを構成 2Fh メモリ初期化:その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 34h CPUポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPUポストメモリ初期化: Jーストラッププロセッサ(BSP)の選択 37h CPUポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ナースブリッジ初期化を開始 36h - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 37h - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのXEの初期化を開始	2Bh	メモリ初期化: Serial Presence Detect(SPD)データ読み込み
2Eh メモリ初期化:メモリを構成 2Fh メモリ初期化:その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPU ポストメモリ初期化:キャッシュの初期化 34h CPU ポストメモリ初期化:Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化:ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化:System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 C Priver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
2Fh メモリ初期化:その他 30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: Jートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ボストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ナースブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < **Oriver** Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	2Dh	メモリ初期化:メモリタイミング情報のプログラミング
30h ASL用に予約済み(ACPI/ASL Checkpointsを参照) 31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ サウスブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ 初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	2Eh	
31h メモリインストール済み 32h CPUポストメモリ初期化を開始 33h CPU ポストメモリ初期化: キャッシュの初期化 34h CPU ポストメモリ初期化: Jートストラッププロセッサ(BSP)の選択 35h CPU ポストメモリ初期化: Jーストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ サウスブリッジ 初期化(ノースブリッジ モジュール固有) 38h ポストメモリ サウスブリッジ 初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	2Fh	メモリ初期化:その他
32h CPUポストメモリ初期化: キャッシュの初期化 33h CPU ポストメモリ初期化: キャッシュの初期化 34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ サウスブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	30h	
33h CPU ポストメモリ初期化: キャッシュの初期化 34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ナースブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ サウスブリッジ 初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 (CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	31h	メモリインストール済み
34h CPU ポストメモリ初期化: Application Processor(s)(AP)の初期化 35h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ナウスブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 (CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
35h CPU ポストメモリ初期化: ブートストラッププロセッサ(BSP)の選択 37h CPU ポストメモリ初期化: System Management Mode(SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ナウスブリッジ初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
37h CPU ポストメモリ初期化: System Management Mode (SMM)の初期化 38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 ODXE IPLの起動 NVRAM初期化 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 (CPU Eジュール固有) 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	34h	11
38h ポストメモリ ノースブリッジ初期化を開始 39h - 3Ah ポストメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有) 3Bh ポストメモリ サウスブリッジ 初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始(CPUモジュール固有) 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	35h	CPU ポストメモリ初期化:ブートストラッププロセッサ(BSP)の選択
39h - 3Ahポストメモリ ノースブリッジ 初期化(ノースブリッジ モジュール固有)3Bhポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有)3Ch - 3Ehポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有)3Fh - 4EhOEMポストメモリ初期化コード4FhDXE IPLの起動 < Driver Execution Environment (DXE) phase > 60hDXEコアの起動61hNVRAM初期化62hサウスブリッジランタイムサービスのインストール63hCPU DXEインストールの開始64h - 67hCPU DXEインストールの開始(CPUモジュール固有)68hPCIホストブリッジのインストール69hノースブリッジDXEの初期化を開始		, , ,
3Bh ポストメモリ サウスブリッジ初期化を開始 3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
3Ch - 3Eh ポストメモリ サウスブリッジ 初期化(サウスブリッジ モジュール固有) 3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	39h - 3Ah	· · · · · · · · · · · · · · · · · · ·
3Fh - 4Eh OEMポストメモリ初期化コード 4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
4Fh DXE IPLの起動 < Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	3Ch - 3Eh	· · · · · · · · · · · · · · · · · · ·
< Driver Execution Environment (DXE) phase > 60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始	3Fh - 4Eh	
60h DXEコアの起動 61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
61h NVRAM初期化 62h サウスブリッジランタイムサービスのインストール 63h CPU DXEインストールの開始 64h - 67h CPU DXEインストールの開始(CPUモジュール固有) 68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
62hサウスブリッジランタイムサービスのインストール63hCPU DXEインストールの開始64h - 67hCPU DXEインストールの開始(CPUモジュール固有)68hPCIホストブリッジのインストール69hノースブリッジDXEの初期化を開始		
63hCPU DXEインストールの開始64h - 67hCPU DXEインストールの開始(CPUモジュール固有)68hPCIホストブリッジのインストール69hノースブリッジDXEの初期化を開始		
64h - 67hCPU DXEインストールの開始(CPUモジュール固有)68hPCIホストブリッジのインストール69hノースブリッジDXEの初期化を開始		
68h PCIホストブリッジのインストール 69h ノースブリッジDXEの初期化を開始		
69h ノースブリッジDXEの初期化を開始		· ·
6Ah ノースブリッジDXF SMMの初期化を開始		
	6Ah	ノースブリッジDXE SMMの初期化を開始
6Bh - 6Fh ノースブリッジDXEの初期化(ノースブリッジモジュール固有)		,
70h サウスブリッジDXEの初期化を開始		
71h サウスブリッジDXE SMMの初期化を開始		
72h サウスブリッジデバイスの初期化		
73h - 77h サウスブリッジDXEの初期化(サウスブリッジモジュール固有)		サウスブリッジDXEの初期化(サウスブリッジモジュール固有)
78h ACPIモジュールの初期化	78h	ACPIモジュールの初期化

POST (hex)	説明		
79h	CSMの初期化		
7Ah - 7Fh	将来のAMI DXEコード用に予約済み		
80h - 8Fh	OEM DXE初期化コード		
90h	Boot Device Selection(BDS)フェーズ		
91h	ドライバ接続の開始		
92h	PCIバス初期化を開始		
93h	PCIバスホットプラグコントローラの初期化		
94h	PCIバス番号を列挙		
95h	PCIバスのリソース要求		
96h	PCIバスのリソース割り当て		
97h	コンソール出力デバイスの接続		
98h	コンソール入力デバイスの接続		
99h	Super IOの初期化		
9Ah	USB初期化を開始		
9Bh	USBリセット		
9Ch	USB検出		
9Dh	USB有効化		
9Eh - 9Fh	将来のAMI コード用に予約済み		
A0h	IDE初期化を開始		
A1h	IDEリセット		
A2h	IDE検出		
A3h	IDE有効化		
A4h	SCSI初期化を開始		
A5h	SCSIリセット		
A6h	SCSI検出		
A7h	SCSI有効化		
A8h	パスワード確認のセットアップ		
A9h	セットアップの開始		
AAh	ASL用に予約済み(ACPI/ASL Checkpointsを参照)		
ABh	セットアップ入力の待機		
ACh	ASL用に予約済み(ACPI/ASL Checkpointsを参照)		
ADh	ブート準備イベント		
AEh	レガシーブートイベント		
AFh	ブートサービスイベントの終了		
B0h	仮想アドレスマップのランタイム設定の開始		
B1h	仮想アドレスマップのランタイム設定の終了		
B2h	レガシーオプションROMの初期化		
B3h	システムリセット		
B4h	USBホットプラグ		
B5h	PCIバスホットプラグ		
B6h	NVRAMのクリーンアップ		
B7h	コンフィグレーションリセット(NVRAM設定のリセット)		
B8h - BFh	将来のAMIコード用に予約済み		
C0h - CFh	OEM BDS初期化コード		
ACPI/ASL Check	points		
01h	S1スリープ状態にシステム移行中		
02h	S2スリープ状態にシステム移行中		
03h	S3スリープ状態にシステム移行中		
04h	S4スリープ状態にシステム移行中		
05h	S5スリープ状態にシステム移行中		
10h	S1スリープ状態からシステム復帰中		
20h	S2スリープ状態からシステム復帰中		
30h	S3スリープ状態からシステム復帰中		
40h	S4スリープ状態からシステム復帰中		
ACh	システムをACPIモードに移行。 割り込みコントローラはPICモード		
AAh	システムをACPIモードに移行。 割り込みコントローラはAPICモード		

4. SERIALのI/Oアドレスとレジスタ機能

◆ I/Oアドレス

下記の表のI/OアドレスはSERIAL Aの場合です。


I/0アドレス	DLAB	Read/Write	レジスタ	
03F8H	0	W	トランスミッタ・ホールディング・レジスタ	THR
	U	R	レシーブ・バッファ・レジスタ	RBR
	1	W	デバイサ・ラッチレジスタ(LSB)	DLL
03F9H	1	W	デバイサ・ラッチレジスタ(MSB)	DLM
	0	W	インタラプト・イネーブル・レジスタ	IER
03FAH	Χ	R	インタラプトIDレジスタ	IIR
03FBH	X	W	ライン・コントロール・レジスタ	LCR
03FCH	Χ	W	モデム・コントロール・レジスタ	MCR
03FDH	X	R	ライン・ステータス・レジスタ	LSR
03FEH	Χ	R	モデム・ステータス・レジスタ	MSR
03FFH	X	R/W	スクラッチ・レジスタ	SCR

[※]DLAB (Divisor Latch Access Bit): ライン・コントロール・レジスタのbit7の値

◆ 各レジスタの機能

I/0アドレス	内容
03F8H	THR: Transmitter Holding Register [DLAB=0] D7 D6 D5 D4 D3 D2 D1 D0 bit7 bit0 bit0 LSB 送信データの書き込み専用レジスタ
03F8H	RBR: Reciever Buffer Register [DLAB=0] D7 D6 D5 D4 D3 D2 D1 D0 bit7 bit0 LSB 受信データの読み出し専用レジスタ
03F8H	DLL: Divisor Latch (LSB) [DLAB=1]
03F9H	DLH: Divisor Latch (MSB) [DLAB=1] D7 D6 D5 D4 D3 D2 D1 D0 bit7

I/0アドレス		内容	
03F9H	IER : Interrupt Enable Register [DLAB=0]		
	D7 D6 D5 D4 D3 D2 D1 D0		
	0 0 0 0 E	MS ELSI ETHREI ERDAI	
		受信データ 割り込みイネーブル 受信データレジスタエンプティ 割り込みイネーブル レシーバラインステータス 割り込みイネーブル モデムステータス割り込みイネーブル [常に0で使用]	
	L		
03FAH	IIR : Interrupt Identification Register		
	D7 D6 D5 D4	D3 D2 D1 D0	
	0 0 0 0	0 <>	
		■ 割り込み内容 割り込み内容 ■ 1:割り込み発生なし 0:割り込み発生あり	
	it2 bit1 bit0 優先順位	内 容	
	0 0 1 割り	込み発生なし	
	-	バーラン、パリティ、フレーミングエラー、または ーク割り込みで発生。 ンステータスレジスタの読み出しでクリアされる。	
	1 0 0 ² レシ バッ	ーブバッファレジスタがレディで発生。レシーブ ファの読み出しでクリアされる。	
	- - - なる	ンスミッタ・ホールディング・レジスタが空に と発生。IIRのリードまたはTHRへの送信データ 込みでクリアされる。	
	(CTS	ムステータス割り込みが発生。 ら、DSR、RI、CD) ムステータスレジスタの読み出しでクリアされる。	

I/0アドレス	内容		
03FDH	LSR : Line Status Register		
	D7 D6 D5 D4 D3 D2 D1 D0		
	0 TEMTTHRE BI FE PE OE DR		
	□ データレディ (1で受信データあり) □ オーバーランエラー (1でエラー発生) □ パリティエラー(1でエラー発生) □ フレーミングエラー(1でエラー発生) □ ブレークインタラプト(1でブレーク状態を検出)		
	└── トランスミッタ・ホールディング・レジスタ・エンプティ (1で送信バッファエンプティ[空])		
	└─ トランスミッタ・エンプティ (トランスミッタ・ホールディング・レジスタとトランスミッタ・ シフト・レジスタが共に空きのときに1がセットされる。)		
03FEH	MSR: Modern Status Register		
	D7 D6 D5 D4 D3 D2 D1 D0 DCD RI DSR CTS DDCD TERI DDSR DCTS		
	ーデルタCTS ーデルタDSR ートレイリング・エッジRI ーデルタデータキャリアディテクト ーCTS ーDSR ーRI		
03FFH	SCR: Scratchpad Register 8bitのリード/ライト可能なレジスタで、データの一時的待避用としてUSERが 使用することができます。		

ボーレートの設定

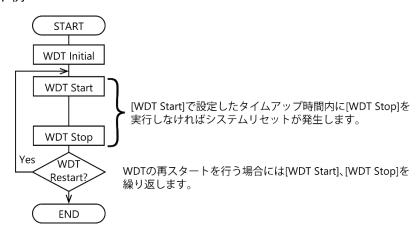
クロック入力を分周することによって、ソフトウェアでボーレートを設定します。ハードウェアとしては、SERIAL A, Bは115,200bpsまで設定可能です。実際に使用可能なボーレートは、使用環境(ケーブル、ソフトウェア等)により異なります。下表に代表的なボーレートとデバイザラッチレジスタ(LSB, MSB)に書き込む値の対応表を示します。

=0,	SERIAL A, B クロック入力(1.8432MHz)		
設定するボーレート	分周レジスタに設定する値 (Decimal)	設定誤差(%)	
50	2304		
75	1536		
110	1047	0.18	
134.5	857	0.099	
150	768		
300	384		
600	192		
1200	96		
1800	64		
2000	58	0.53	
2400	48		
3600	32		
4800	24		
7200	16		
9600	12		
14400	8		
19200	6		
28800	4		
38400	3		
57600	2		
76800			
115200	1		
153600			
230400			

例) SERIAL Aを9600bpsに設定する場合は、デバイザラッチレジスタ(MSB)に00、デバイザラッチレジスタ(LSB)に12(10進)を書き込みます。

5. ウォッチドッグタイマ

ウォッチドッグタイマは、工業用コンピュータシステムのロックアップ(異常停止)防止に対応した保護機能を提供します。ほとんどの工業環境には、コンピュータに悪影響を及ぼす重機、発電機、高電圧送電線、電圧降下などが存在します。例えば、電圧降下が発生すると、CPUは停止状態になるか、無限ループに陥って、システムロックアップが生じます。


ユーザーで作成されるアプリケーションソフト内でウォッチドッグタイマ機能を有効にし、アプリケーションソフトから設定されたタイムアウト間隔以内で定期的にウォッチドッグタイマを再トリガしない限り、内部ボード上のハードウエアリセット信号が自動的に発生します。

この機能により異常状態の発生時も、動作中のプログラムが通常の方法でリスタートできるようになります。 ウォッチドッグタイマには、255レベル(1-255秒)のタイムアウト間隔をソフトウェア設定できます。 タイムアウト間隔には、2秒間の許容誤差があります。 正常なシステム動作を維持するには、許容誤差を考慮してユーザー作成プログラムによりウォッチドッグタイマを再トリガしてください。

例) タイムアウト間隔を30秒に設定した場合、許容誤差を考慮して28秒間が経過する前にユーザー作成プログラムによりウォッチドッグタイマを再トリガしてください。再トリガがされなかった場合(28 - 32秒間が経過した後)は、システムが自動的にリブートします。

ここでは、ウォッチドッグタイマの使用法に関するフローチャートを示しています。

(1) フローチャート例

※ 再スタート時に、[WDT Stop]→[WDT Start]を実行する代わりに[WDT Stop]を実行せず、連続して[WDT Start]を実行することも可能です。

ウォッチドッグタイマを使用するにはCONTEC Managerが必要です。(OSプレインストールモデルには、出 荷時状態でインストール済)

なお、CONTEC Manager は当社Webサイトよりダウンロードできます。詳細は、当社テクニカルサポートセンターまでお問い合わせください。

△注意

タイマ間隔には±2秒の許容誤差があります。

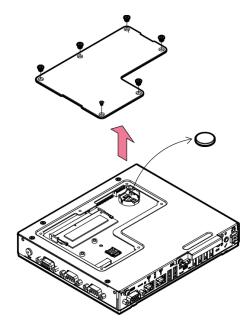
6. 電池

1. 電池の仕様

本製品に使用している電池は下記になります。

項目	内容
品種	リチウム1次電池
型式	BR-2032/BN
メーカー	パナソニック
公称電圧	3V
公称容量	200mAh
リチウム含有量	1g以下

2. 電池の廃棄


⚠警告

- 電池の交換が必要な場合は修理となりますので、販売店または当社各支社・営業所までお問い合わせく ださい。
- 不適切な電池の交換は爆発の危険がありますので行わないでください。
- 取り外した電池を廃棄される場合には自治体の指示に従って適切に廃棄してください。

電池の取り外し

以下の手順で電池を取り外してください。

- 1 本体力バーからねじを外し、本体力バーを取り外します。
- 2 粘着テープで固定された電池を剥がし、コネクタを抜いて電池を取り外します。

7. SSDの寿命

1. 書き換え寿命について

製品に搭載しているM.2 NVMe(TLC)は、使用しているメモリの特性上、書き換え回数に制限があります。書き換え寿命については、参考値として下記の計算式によって求めることができます。

書き換え寿命(年) = 総書き換え寿命(回) / (年間消費ブロック数 / 総ブロック数)

M.2 NVMe(TLC) 256GB

例:

4MBのファイルを作成し、10秒間に1回書き換えた場合。

年間消費ブロック数 = (4 × (60 / 10) × 60 × 24 × 365) / 24 = 525,600 (ブロック)

寿命 = 3,000 / (525,600 / 6,000) ≒ 34.2 (年)

他容量については年間消費ブロック数、総ブロック数を以下に置き換えて算出ください。 M.2 NVMe(TLC) 1TBの場合、年間消費ブロック数:525,600、総ブロック数:24,000

寿命値は、特定条件での参考値です。実際の寿命については、実運用を想定した書き込みを実施した上で専用ソフトウェア(※)またはBIOSのSelf InspectionからSMART値をご確認ください。

2. S.M.A.R.Tについて

S.M.A.R.T.情報を取得できる自己診断プログラムをダウンロードすることができます。

また、BIOSのSelf Inspection機能でもS.M.A.R.T.情報を取得できます。

※詳細は、当社テクニカルサポートセンターまでお問い合わせください。

オプション品

本製品と組み合わせて使用できる、各オプション品をご紹介しています。

1. オプション品

本製品には以下のようなオプション品があります。

必要に応じてご購入ください。

製品名	型式	内容
ACアダプタ	PWA-65AWD1	スイッチングACアダプタ 12V 5.417A
ストレージ	CFS-4GB-A	4GB SATA CFastカード(SLC)
	CFS-8GB-A	8GB SATA CFastカード(SLC)
	CFS-16GB-A	16GB SATA CFastカード(SLC)
	CFS-32GBM2-A	32GB SATA CFastカード(MLC)
	CFS-16GBQ-A	16GB SATA CFastカード(Q-MLC)
	CFS-32GBQ-B	32GB SATA CFastカード(Q-MLC) (広温度仕様)
アンテナ延長ケーブル	IPC-RPSMA-2	RP-SMAコネクタ同軸ケーブル
取り付け金具	BX-BKT-VESA02	VESA対応取り付け金具(「75×75」、「100×100」)

△注意

当社オプション品以外を使用した場合は、正常に動作しない場合や機能に制限が出る場合があります。

オプション品に関する最新情報は当社Webサイトでご確認ください。

Webサイト https://www.contec.com/

各種サービス・お問い合わせ

当社の製品をより良く、より快適にご使用いただくために、 行っているサービス、サポートをご紹介しています。

1. 各種サービス

当社製品をご使用いただく上で、技術資料のダウンロードをはじめ、様々な役に立つ情報を提供しています。

ダウンロード

https://www.contec.com/jp/download/

最新のデバイスドライバやファームウェア、解説書など技術資料がダウンロードいただけます。ご利用には会員登録(myCONTEC)が必要です。

FAQライブラリ

https://www.contec.com/jp/tsc/

よくあるご質問やトラブルシューティングをQ&A形式でご紹介しています。

YouTubeチャンネル

https://www.youtube.com/@ContecCoLtd

当社公式のYouTubeチャンネルです。

製品のセットアップ方法、新製品紹介、展示会レポートなどの動画を配信しています。

インターネット通販

https://www.contec-eshop.com/

当社が運営する、最短翌日納品の大変便利なネット直販サービスです。

評価機無料貸出

https://www.contec.com/jp/support/evaluation/ 当社製品を無料でお試しいただけるサービスです。 ご購入前の仕様確認、ご評価にぜひご活用ください。

ご利用には会員登録(myCONTEC)が必要です。

リカバリメディア送付サービス

https://www.contec.com/jp/support/recovery-media/

産業用コンピュータ製品のリカバリを行う際に必要なメディアを送付させていただくサービスです。

2. お問い合わせ

当社製品に関する技術的なご質問、またご購入に関するお問い合わせなど各種のお問い合わせを承っていま す。

技術的なお問い合わせ(テクニカルサポートセンター)

製品の使い方、初期不良、動作異常、環境対応など製品の技術的なお問い合わせに、専門技術スタッフが迅 速かつ親切丁寧に対応します。

当社Webサイトからお問い合わせください。

お問い合わせ https://www.contec.com/jp/tsc/

営業的なお問い合わせ

ご購入方法、販売代理店のご紹介、カスタム対応/OEM/ODMのご相談、システム受託開発のご依頼は当社Web サイトの『総合営業窓口』からお問い合わせください。

お問い合わせ

https://www.contec.com/jp/support/distributors/

納期、価格、故障修理のご依頬、寿命部品交換のご依頼

当社製品取り扱いの販売代理店へお問い合わせください。

販売代理店

https://www.contec.com/jp/support/distributors/

改訂履歴

改訂日	改訂内容
2023年11月	初版
2024年12月	商品ラインアップ追加。
2025年3月	商品ラインアップ追加。

- 本書の内容に関しては将来予告なしに変更することがあります。
- 本書の内容について万全を期しておりますが、万一ご不審な点や、記載もれなどお気づきのことがありましたら、お買い求めの販売店またはテクニカルサポートセンターへご連絡ください。
- Intel、Intel® Atom®は、アメリカ合衆国およびその他の国における Intel Corporation の商標です。 Microsoft, Windowsは、米国 Microsoft Corporation の米国およびその他の国における登録商標です。
- その他、本書中に使用している会社名および製品名は、一般に各社の商標または登録商標です。

よくあるご質問 (FAQ検索)

FAQライブラリ

https://www.contec.com/jp/tsc/

お客さまからよく寄せられるお問い合わせ内容を「Q&A」形式 でご覧いただけます。

製品やサービスに関する疑問やお困りごとの解決にお役立て ください。

株式会社コンテック 〒555-0025 大阪市西淀川区姫里3-9-31

https://www.contec.com/

本製品および本書は著作権法によって保護されていますので無断で複写、複製、転載、改変することは禁じられています。

BX-T310シリーズ リファレンスマニュアル

NA09636 (LXCT305) 03142025_rev5 [11102023]

2025年3月改訂