

CONPROSYS®

物联网边缘控制器

CPS-BXC200

目次

前言	. 5
为了安全使用 1	10
各部分名称与说明1	17
安装3	34
设置4	12
BI0S设置6	51
附录	37
选配件 10)4

CONTEC CO., LTD.

为了安全使用10

1.	注意记号的说明	11
2.	操作注意事项	12
	1. FCC PART15 A级注意事项	14
	2. EN55032 A级注意事项	14
	3. VCCI A级注意事项	14
	4. 标记	14
3.	EU加盟国内电池、蓄电池的处理	15
4.	安全注意事项	16
	1. 安全风险	16
	2. 安全对策案例	16

各部分名称与说明17

1.	各部分名称	. 18
2.	各部分说明	. 19
	1. 堆栈总线	. 19
	2. 电源连接器	. 20
	3. 通用输入输出/RAS连接器	. 21
	4. LAN端口	. 23
	5. 电源开关	. 24
	6. USB端口	. 25
	7. RS-232C串行口	. 26
	8. LED显示	. 27
	9. RGB连接器	. 28
	10. CFast卡槽	. 29
	11. ROM Clear开关	. 31
	12. DisplayPort连接器	. 32
	13. FG连接器	. 33

1.	安装方法	35
	1. 软件安装	35
	2. 硬件设定	35
	3. 硬件安装	35
	4. 驱动程序的初始设置	36
	5. 动作确认	38
2.	安装不正常时	40

	1. 事例与对应方法	. 40
	2. 不能解决的时候	. 40
3.	卸载驱动程序	. 41
	1. 卸载设备驱动程序	. 41
	2. 卸载开发环境	. 41

1.	主机设置 1. 设置条件 2. 在DIN导轨上的安装/拆卸 3. 堆栈型IO扩展模块的安装	43 43 46 49
2.	连接外部机器	. 54
3.	连接电缆	56
	1. 电源	50
	3. RS-232C	57
	4. 数字输入	59
	5. 数字输出	. 59
4.	USB防脱落支架的安装	60 60

BIOS 设置61

1.	概要	62
	1. 进入设置	62
	2. 设置操作	63
	3. 帮助	63
	4. 问题发生时	63
	5. 注意事项	63
2.	主菜单	64
	1. 设置项目	64
3.	Main	65
4.	Advanced	66
	1 Trusted Computing	67
	2 ACPI Settings	68
	3. RAS Configration	69
	4. Super 10 Configuration	70
	5 H/W Monitor	70
F		70
5.	1 Cruth Deider	71
	1. South Bridge	72
	2. SATA Drives	73
	5. USB Contiguration	74
6.	Security	75
7.	Boot Configuration	77
8.	Save & Exit	79
9.	CONTEC Utility	81
	1. Disk Copy	82

附录	:	87
1.	规格 1. 规格 2. 电源管理功能 3. 关于电源的要求	
2.	外形尺寸	91
3.	POST代码	
4.	SER IAL的I /0地址和寄存器功能	
5.	电池的废弃 1. 电池的规格 2. 电池拆卸方法	100 100 100
6.	M.2的寿命 1. 关于改写寿命 2. 关于S.M.A.R.T.	102 102 103

选配件104

1. 选配	件			105
-------	---	--	--	-----

说明在使用本产品之前必须了解的信息,包括与本产品相关 的各种说明书、产品概要和配件等。

1. 关联手册说明

与此产品相关的手册包括以下内容。

请结合本书一起使用。

• 必须阅读

名称	用途	内容	来源
产品说明	本产品开箱后务必阅读。	说明在使用本产品前对附件的确 认及注意事项。	产品包装箱内 (印刷品)
参考手册	使用本产品时候阅读。	关于本产品的功能,设定等硬件	网站下载
(本文)		说明。	(PDF文件)
CONTEC数据收集软件(DIO)	使用Edgecross基本软件时	说明"CONTEC数据收集软件	₩
参考手册	阅读。	(DIO)"的功能和规格。	M G M G M G M G M G M G M G M G M G M
MICROSOFT SOFTWARE LICENSE	本产品开箱后务必阅读。	说明使用Windows软件的客户的	₩ 网站下载
TERMS ※1		权利和条件。	(PDF文件)
Trellix END USER LICENSE AGREEMENT & SOFTWARE LICENSE AGREEMENT ※2	本产品开箱后务必阅读。	说明使用软件的客户的权利和条 件。	図 M M M M M M M M M M M M M
预装操作系统机型OS手册 ※1	本产品开封后请务必阅	说明0S的基本信息、设置步骤、	₩ 网站下载
	读。	恢复步骤。	(PDF文件)

※1 仅限预装操作系统机型。

※2 仅限预装Trellix统机型。

CPS-BXC200系列

- ・CPS-BXC200-NAxxx・・・基本机型
- ・CPS-BXC200-Wxxxx・・・预装操作系统机型

◆ 下载最终用户许可协议

请从以下URL下载后进行使用。

下载

https://www.contec.com/cn/support/useterms/

各种手册从以下URL下载使用。

下载

https://www.contec.com/cn/download/

2. 产品概要

本产品搭载Intel Atom处理器E3950,是可安装在35mmdin轨道上的无风扇型物联网边缘控制器。通过连接 CONPROSYS系列堆栈型I/0模块可以扩展模拟量、数字量输入输出等功能。

采用嵌入式CPU,使用可长期供货的零部件,用户可以放心使用。BIOS由本公司定制,可以提供BIOS级的支持。 手掌大小的面积上,大大节省了设置的空间。

配备有模拟RGB、DisplayPort、1000BASE-T、USB3.0、串口等扩展接口。无风扇设计,存储采用M.2/CFast卡的 完全无转动机构设计,方便用户维护。

此外,本产品还配备了 RAS(*1) 功能。该功能实现了程序死机自动重启系统,可保存机内温度上升的异常记录, 从而提搞了系统的可靠性。

*1 Reliability Availability and Serviceability:系统稳定运行的支援功能。

关于Edgecross基本软件(体验版)

在CPS-BXC200-WxxxxA机型中,预装了Edgecross基本软件(体验版)。

使用前,请先仔细阅读软件许可协议,并在同意的前提下,按照安装手册使用本软件。。

关于Edgecross基本软件的产品许可证的购买、许可证版的技术支持等详情请咨询Edgecross联盟。

https://www.edgecross.org/

CPS-BXC200-WxxxA机型可以获得授权使用CONTEC数据收集软件(DIO)的权利。

详情可联系本公司营业窗口。

3. 特点

■ 面向边缘计算的安全的物联网控制器

在预装操作系统机型中,安装了支持日英中韩4国语言的64位Windows 10 IoT Enterprise、McAfee白名单防病 毒软件,具备了作为互联网连接设备的基本条件。

■ 三个千兆网口连接不同的网络层

配备有3个千兆网口。最适合用于将工厂内的现场总线、控制器之间、上层信息系统网络等不同的网络阶层相 互连接的IoT网关的用途。

■ 通用PCI Express、PCI、USB总线I/O扩展模块的API函数

普通Windows电脑+CONTEC丰富的扩展板产品进行的开发成果,可以直接移植到本产品+堆栈型I/0模块的构成中,极大地提高了开发效率。I/0模块最多可以连接8台(堆栈型模块的消耗电流合计在3.3A以下)。

■ 为降低运行成本和节省能源做出贡献

采用低耗电平台Intel®AtomTM处理器E3950,在确保充分性能的同时实现低耗电。

■ 适用于-20~+60℃的环境温度

对应于-20~+60℃的环境温度,可在各种环境中使用。(但是,使用1000BASE-T时: -20~55℃)

减轻维护检查工作的无风扇设计

无CPU风扇,存储器采用SSD,实现完全无转动机构的设计。尽可能减少容易老化零部件的使用,大幅减轻维护 检查业务的负担。

■ 支持在无需关闭操作系统的情况下断开电源的"断电保护器"

搭载"断电保护器"功能,保护数据不受电源故障影响,禁止对存储卡进行写入。^{*1} 与Windows IoT Enterprise的锁定(抑制硬盘写入)功能并用可无需进行关机处理,安全关闭电源。 同时,还可防止因突然断电导致文件系统与数据破损。

■ 采用自行设计的BIOS,实现便利实用程序

安装有基于康泰克独特便利BIOS^{**}的实用程序。

"Disk Copy"功能可在BIOS层面实现安全的硬盘备份,同时支持文件格式及压缩文件格式的备份。 此外,还配备有更新BIOS的"BIOS更新工具"^{*3}。

※1 仅支持 CPS-BXC200-xx0xM05x 和 CPS-BXC200-xx0xL07x
※2 欲了解更多相关信息,请确认 "BIOS设置"章节的各项目。
※3 欲了解更多相关信息,请咨询经销商。

4. 装箱单

在使用之前,先确认以下物品是否齐全。

万一有缺少或破损的场合,请联系购买的经销商或本公司。

- *1 仅限McAfee预装型。
 - ※本产品使用本公司推荐电源进行规格的符合确认。因此,使用本公司推荐电源以外的电源时,有可能超 出标准对象。关于推荐电源的最新信息请在本公司的主页上确认。
 - ※ 将本产品连接到台式机上的模块以进行系统开发,验证等时,可使用随附的树脂DIN导轨。不能保证随附的树脂DIN导轨可在现场使用,因此在现场安装时,请使用市售的DIN导轨。

为了安全使用

说明安全使用本产品的注意事项。在使用本产品前,务必阅读。

1. 注意记号的说明

在本书中,为了避免人身事故和机器的损坏,按如下符号提供有关的安全信息。 应认真理解内容,并安全操作机器。

产品表面的警告标志" ① ",为务必确认"2.操作上的注意"所记载的内容。

⚠危 险	表示【有可能导致人员死亡或重伤等严重后果,并且重要程度很高的内容】。
⚠警告	表示【有可能导致人员死亡或重伤等严重后果的内容】。
⚠注意	表示【有可能导致人员负伤或财产损失等后果的内容】。

2. 操作注意事项

▲危险

- 不要在有易燃性和腐蚀性气体的地方使用。会导致发生爆炸,火灾,触电,故障。
- 不要让异物(金属片、可燃物、液体等)从通气孔等进入内部。会导致发生火灾或触电。
- 避免在不稳定的地方安装或安装不到位。会导致跌落事故。
- 请使用规定的电源电压。如果电源电压超过规定的范围,会导致火灾和触电。
- •本产品在本公司指定以外的方法使用时,保护功能有可能受损。
- 我们没有考虑过将本产品用于航空、宇宙、核能、医疗器械等需要高度可靠性方面的用途。不要用于这些用途。
- 本产品用于列车、汽车、防灾防盗装置等安全性相关的用途时,请咨询购买的销售店或本公司技术支持中心。

⚠注意

- 不要在超出温度标准的高温或低温下,或在温度变化较大的地方使用或保管。
 - 例 ·阳光直射的地方 ·热源附近
- 不要在极端潮湿或灰尘较多的地方使用或保管。如果有水或液体状态的东西,或导电性的尘埃进入内部, 使用时是非常危险的。在这种环境中使用时,应将其安装具有防尘结构的控制面板上。
- 避免在有冲击和震动的地方使用和保管。
- ●运输时应采取足够的措施,避免振动和冲击直接影响本产品。 冲击15g (11ms)以下
- 在规定的操作环境(温度、湿度、振动、冲击)内使用。
- 务必接地。
- 安装时不要堵塞通气孔和排气口。因为内部热量的积聚,可能会造成误动作或故障。
- 不要在产生强磁性和噪声的装置附近使用。这会成为本产品误动作(停止、重启)的原因。
- 避免在散发化学品的空气中,或与化学品接触的地方使用和保管。
- 在拆卸各连接器, 电缆, 堆栈型模块时, 一定要从插座上拔掉电源电缆, 使本产品LED处于关灯的状态。
- 不要改造本产品。对于改造后的产品,本公司概不负责。
- •发现故障或异常(异臭或过度发热)时,请切断电源,咨询购买的销售店或本公司技术支持中心。
- 与周边设备的连接电缆请使用接地的屏蔽电缆。
- 产品的污垢,用柔软的布沾水或中性洗涤剂轻轻擦拭。不要使用稀释剂、氨等挥发性的东西或强氯化溶剂 擦拭,会成为涂饰剥离或变颜色的原因。
- 连接电缆时,请检查连接器的形状,并确保其方向正确。连接后,请勿对连接器的接头施加太大的力。可能会造成本产品及接合部破损或连接不良。
- 产品具有D-SUB连接器时,固定电缆连接器合适的紧固扭矩在2kgf cm以下。
- •操作过程中,勿触摸本产品的金属或端子部分。可能会导致误动作或故障。
- 勿用湿手触摸主机和连接器等。有触电的危险性。

- 本产品为了增加功能,提高品质,有可能会在没有预告的情况下更改规格。继续使用时,也务必阅读本公司主页的手册,确认内容。
- 在易受过电流和过电压(闪电浪涌等)影响的场所使用时,需对全部的输入回路(电源线,信号线,接地线等)选定并使用合适的浪涌保护装置(SPD)。。关于SPD的选定/导入/安装,应由专业人员实施。
- •本产品废弃时,应按照法律及当地政府规定的处理方法妥善处理。
- 通电时务必安装端盖。
- 在UL规格的情况下,本产品的电源及数字量Ⅰ/0,必须连接SELV和Limited Energy Circuit。在美国也可以使用Class2电源。
- 在操作过程中,如果本产品和模块之间的连接脱落的话会发生故障。因此,为了避免本产品和模块之间的 连接脱落,应务必安装在DIN轨道上使用。
- 本产品的外壳可能会变热。在操作期间或关闭电源后,请勿直接触摸它,否则可能会导致灼伤。另外,应 避免将这个部分安装在手可能碰触到的地方。
- •无论任何原因,本公司都无法保证SSD的记录内容。
- •为了防止文件损坏,请务必等待操作系统正常关机后再切断电源。
- 由于与其他机器组合所造成的误动作而造成的损失,本公司概不负责。
- CFast卡不支持热插拔。勿在本产品电源接通状态下拔出CFast卡并进行接触。否则可能会造成误动作及故 障。
- 使用选配件以外的CFast卡时,不能保证本产品的规格。如果要在规格内使用,务必使用选配件的CFast 卡。关于选配件,请参阅《选配件》的章节。
- 关于零部件的寿命

(1) 锂电池··· 内部时钟、CMOS RAM的保持使用锂电池。

不通电状态、25℃环境温度时的备用时间在10年以上。

(2) M. 2···· 内置M. 2存储卡。

估计寿命为pSLC型重写次数2万次,MLC/TLC型重写次数3千次。

详细内容请参照附录中的《M.2的寿命》。

*消耗品的更换 将按收费修理处理。

*消耗品的寿命仅供参考,并非保证值。

- •本产品在启动时可能会在BIOS画面中重新启动,这是正常的,对后续操作系统启动后的操作没有影响。
- 关于CE EMC指令附带条款
 - 为了使本产品符合上述标准,应在连接LAN及通用输入输出·RAS连接器的电缆使用屏蔽电缆。
- 以使用本产品为理由对造成的损失及利润损失等诉求,不管前项如何规定,都不承担任何责任。
- •请在确认满足以下条件后再使用本产品。
 - ・室内使用
 - ・海拔5000m以下
 - ・汚染程度 2

在不同的标高,产品的使用环境温度可参考以下相关公式。海拔变高的话,受气压下降的影响,产品内部 的散热效果减少,是产品寿命缩短或故障的主要原因。

・环境温度=60[℃]-0.005×标高[m]

例) 在3000m 使用的场合 60 ℃ - (0.005×3000m) =45 ℃ (环境温度)

1. FCC PART15 A级注意事项

NOTE

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment.

This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC WARNING

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

2. EN55032 A级注意事项

Warning:

Operation of this equipment in a residential environment could cause radio interference.

3. VCCI A级注意事项

这个装置是A类机器。如果在住宅环境中使用这个装置的话,可能会引起电波干扰。这种情况下有时会要 求使用者采取适当的对策。

VCCI-A

4. 标记

电源标记(直流电压输入)	接地端子标记	高温标记
	Ţ	
直流电源	接地端子	高温表面

3. EU加盟国内电池、蓄电池的处理

该标志仅对欧盟国家有效。

该标志是在EU指令2006/66/EC的第20条《对最终用户的信息》及附件 II 中指定的。

上述标志表示在废弃电池及蓄电池时,需要与一般垃圾分开处理。

在上述标志下显示元素符号时,表示电池或蓄电池的重金属含量超过基准浓度。

浓度的基准如下

Hg: 水银(0.0005%)、Cd: 镉(0.002%)、Pb: 铅(0.004%)

如果这些材料没有被妥善处理,将会对人体和地球环境产生重大影响。

详细的电池规格、电池的拆卸、电池的废弃可参照《附录》中的章节。

4. 安全注意事项

在连接网络时,应考虑存在安全风险的基础上,参考安全对策案例,适当地设定主机及相关网络设备。

1. 安全风险

- 系统因外部网络入侵而中断、数据损坏、信息窃取或感染恶意软件*1。
- 入侵后以那个机器为踏板,对外部网络的攻击。(从受害者变成加害者)
- 由于网络与外部的连接,导致意外的信息泄漏。
- 这些事故的二次损害包括声誉损害、损害赔偿责任、信誉损失和机会损失等。
- *1····恶意软件 (Malicious Software): 恶意程序。执行用户不希望的动作程序

2. 安全对策案例

- 更改初始密码。(密码的设置方法,请参阅所使用的说明书,手册)
- 设置密码强度高的密码。

包括字母小写字母、大写字母、数字等,组成难以类推的密码。

- 定期更改密码。
- 停止(禁用)不需要的网络服务或不需要的功能。
- 限制网络连接设备的网络访问源。*2
- 限制网络连接设备的网络开放端口。*2
- 使用专用网络或VPN※3等闭域网构建网络

*2…有关设置方法,请与网络设备的制造商联系。

*3…VPN (虚拟专用网络):通过身份验证和加密保护通信路径,防止第三方进入的安全网络。

非法访问的手段和漏洞(安全漏洞),常常被发现,没有完美的防止手段。 在理解网络连接时常伴随着危险的同时,强烈推荐经常获取新的信息,进行安全对策。

各部分名称与说明

对本产品各部分的名称和功能、各连接器的引脚分配进行说明。

1. 各部分名称

各部分的名称及其功能如下所示。

No.	名称	功能		
1	堆栈总线	用于连接扩展I0模块,向堆栈型模块供电及通信。		
2	电源连接器	电源接线端子,使用附件3芯连接器。		
3	通用输入输出/RAS连接器	IO/RAS接线端子,使用附件6芯连接器。		
4	LAN端口	网口。		
5	电源开关	控制本产品电源。		
6	USB端口	USB 3.0 TYPE-A的USB端口。		
$\overline{7}$	RS-232C串口	RS-232C串口 (针)。		
8	LED指示灯	显示本产品状态的LED。		
9	RGB显示接口	连接显示器的模拟RGB连接器(孔)。		
(10)	CFast卡槽	CFast卡 Type I用连接器。		
(1)	清BIOS开关	当BIOS设置值恢复到默认值时使用。		
(12)	DisplayPort接口	连接显示器的DisplayPort连接器。		

2. 各部分说明

本产品的连接器和开关等各部分功能的说明。

1. 堆栈总线

用于连接扩展I0模块,向堆栈型模块供电及通信。。

⚠注意

- 安装和拆卸模块时,请先关闭本机的电源。
- •务必在确认本机及堆栈型模块的LED熄灭后进行安装或拆卸。

2. 电源连接器

使用附件的3芯连接器连接外部电源。

【连接器型号】: DEGSON 15EDGK-3.5-03P-13-1000AH(或类似品)

引脚分配

引脚编号	信号名称	内容
1	V + (24VDC)	24VDC电源正端
2	V — (GND)	24VDC电源负端
3	FG	接地

电源上升时间

3. 通用输入输出/RAS连接器

提供数字量输入输出功能和远程访问服务的接口。

使用附件的6芯连接器与外部设备连接。

【连接器型号】: DEGSON 15EDGKC-3.81-06P-13-00AH(或类似品)

引脚分配

引脚编号	信号名称	内容
1	COMI	通用输入正公共端
2	PIO	通用输入
3	PI1	通用输入,远程复位或远程开机
4	POO	通用输出,监视时钟警报输出
5	СОМО	通用输出负公共端
6	N. C.	未连接

▶ 通用输入输出和远程开机/复位

搭载3点通用的绝缘型输入输出(含RAS功能*1)。输入可用于通用输入、远程复位输入或远程开机输入。 输出可用于通用输出或监视时钟警报输出。

为了将输入信号用作远程复位或远程开机,必须在BIOS中进行相关设置。

设置方法请参考《BIOS设置 (P63)》中的《RAS Configuration》。

*1 使用RAS功能需要CONTEC Manager (预装系统机型出厂时已安装)。 CONTEC Manager也可以从本公司的网站上下载。详情请咨询本公司技术支持中心。

规格

【输入部】

- 输入形式: 光电耦合器绝缘电流驱动输入
- 输入电阻: 4.7kΩ
- 输入点数: 2点,其中PI1可用于远程开机、远程复位
- 保护电路: 反向保护二极管
- 响应时间: 100 µ sec以内
- 外部电源: 12-24VDC (±10%)

【输出部】

- 输出形式:光电耦合器绝缘集电极开路输出
- 额定输出: 最大30VDC, 40mA
- 输出点数:1点,可用于监视时钟的警报输出
- 响应时间: 300 µ sec以内

■外部输入输出电路

输入电路

输出电路

4. LAN端口

配备了3个以太网LAN端口。

【网络形态】: 1000BASE-T/10BASE-TX/10BASE-T

【传输速度】: 1000M*/100M/10Mbps

- 【网络最长路径】: 100m/段
- * 1000Mbps时,需要使用5e类以上网线。

引脚分配

引脚编号	信号名称 100BASE-TX / 1000BASE-T	内容
1	TX+ / TRD+(0)	发送数据(+)输出/收发数据0(+)
2	TX— / TRD-(0)	发送数据(-)输出/收发数据0(-)
3	RX+ / TRD+(1)	接收数据(+)输入/收发数据1(+)
4	N.C. / TRD+(2)	未连接/收发数据2(+)
5	N.C. / TRD-(2)	未连接/收发数据2(-)
6	RX— / TRD-(1)	接收数据(-)输入/收发数据1(-)
7	N.C. / TRD+(3)	未连接/收发数据3(+)
8	N.C. / TRD-(3)	未连接/收发数据3 (-)

显示颜色及其含义

LED	颜色	显示	内容	
Link/Act	绿色	亮灯	连接状态。	
		闪烁	正在和连接的外部终端发送数据。 未连接。	
		关灯		
Speed	橙色/绿	長 売灯 □ 以1000Mbps连接		
	色	亮灯	以100Mbps连接。	
		关灯	以10Mbps连接。或未连接状态。	

⚠注意

使用非预装的操作系统时,相对于丝印的LAN-A、LAN-B、LAN-C,由于操作系统的识别顺序不定,网络适配器的显示顺序可能会改变。

应注意1000BASE - T使用时的工作保证温度。详情参照设置条件。

5. 电源开关

控制本产品的电源开关。

引脚分配

操作	内容
短按	开机、关机(根据设定)
长按(4秒以上)	强制关机

6. USB端口

配备3个USB TYPE-A USB 3.0接口的端口。

引脚分配

引脚编号	信号名称
1	USB_VCC
2	DATA-
3	DATA+
4	USB_GND
5	SSRX-
6	SSRX+
7	USB_GND
8	SSTX-
9	SSTX+

7. RS-232C串行口

配备一个符合RS-232C标准的串行口。 主机使用连接器为9芯D-SUB(针)。 最大波特率可达115200bps。

引脚分配

引脚编号	信号名称	方向	内容	
1	CD	输入	载波检测	
2	RD	输入	接收数据	
3	TD	输出	发送数据	
4	DTR	输出	数据终端准备就绪	
5	GND	_	信号地	
6	DSR	输入	数据发送准备就绪	
7	RTS	输出	发送请求	
8	CTS	输入	可发送	
9	RI	输入	被叫表示	

8. LED显示

用LED显示本产品的动作状况。 LED的内容如下所示。

◆ LED显示

显示颜色及其含义

LED	颜色	显示	内容	
Ð	橙色	亮灯	表示SATA设备处于访问状态。	
ST3	红色	亮灯	用户应用程序控制LED的动作。*2	
		关灯 🗌	用户应用程序控制LED的动作。*2	
ST2	红色	亮灯	用户应用程序控制LED的动作。2	
		关灯	用户应用程序控制LED的动作。*2	
ST1	绿色	亮灯	用户应用程序控制LED的动作。*2	
		关灯 🗌	用户应用程序控制LED的动作。*2	
PW *1	绿色/	亮灯	表示正在启动。	
	红色	亮灯	表示堆栈总线正在初始化。初始化结束后关灯。	
			表示堆栈总线有异常。	
		关灯	表示无输入电源、关机状态。	

*1 接通电源时会暂时变成橙色(绿/红点亮)。

*2 控制STATUS LED需要CONTEC Manager(在预装操作系统机型中,出厂时已安装好)。 CONTEC Manager也可以从本公司主页下载。详情请咨询本公司技术支持中心。

9. RGB连接器

配置一个用于连接显示器的模拟RGB连接器端口。

引脚分配

引脚编号	信号名称	引脚编号	信号名称
1	RED	9	+5V
2	GREEN	10	GND
3	BLUE	11	N. C.
4	N. C.	12	DDCDATA
5	GND	13	HSYNC
6	GND	14	VSYNC
7	GND	15	DDCCLK
8	GND		

⚠注意

如果在没有将显示电缆连接到模拟RGB接口的情况下启动操作系统,而在启动操作系统后再连接显示电缆的话(俗称"后插"),则可能无法显示。

10. CFast卡槽

配置一个CFast卡槽,用于插入CFast卡(Type I)。

引脚分配

	PC17	PC1 S7	
引脚编号	信号名称	引脚编号	信号名称
PC1	CDI	S1	GND
PC2	GND	S2	TX+
PC3	N. C.	S3	TX-
PC4	N. C.	S4	GND
PC5	N. C.	S5	RX-
PC6	N. C.	S6	RX+
PC7	GND	S7	GND
PC8	LED		
PC9	N. C.		
PC10	N. C.		
PC11	N. C.		
PC12	N. C.		
PC13	+3. 3V		
PC14	+3. 3V		
PC15	GND		
PC16	GND		
PC17	GND		

⚠注意

CFast卡不对应热插拔。请勿在本产品电源接通状态下拔插CFast卡,可能会造成误动作及故障。

◆ CFast卡的插入

1 按下图的样子,将CFast卡插入CFast卡槽。

2 插入CFast卡后,使用附件CFast防脱落夹头拧紧螺丝。 取下CFast卡时,请按照与相反的步骤取下。

⚠注意

- 如螺钉的紧固扭矩超过指定值,则螺钉孔可能会断裂。
 合适的螺丝紧固扭矩是5~6kgf cm以下。
- 使用选配件以外的CFast卡时,不能保证本产品的规格。如果想在规格内使用,务必使用选配件的CFast 卡。
- •为了防止静电造成的损坏,在CFast卡的安装、拆卸时请进行带电防止对策(佩戴防静电腕带等)。
- 安装、拆卸CFast卡时,勿用手触摸基板上的电子部件。
- 不要触摸CFast卡的端子部分。会成为故障的原因。
- 不要弄错CFast卡的插入方向。插入CFast卡时,请不要用力过大。否则可能会导致连接器损坏。
- 不要使CFast卡受到掉落等强烈冲击,会成为故障的原因。

11. ROM Clear开关

BIOS设置值可以通过设置菜单中的"Load Optimal Default"恢复到缺省值,也可通过将[清BIOS开关]设为ON 恢复到缺省值。

引脚分配

引脚编号	信号名称	内容
1	ROM Clear	ON时,清除BIOS设置值,恢复缺省值
2	未使用	未使用

◆ 操作手顺

- 1 在主机电源关闭的状态下,将ROM Clear SW变更为ON。
- 2 打开主机电源,显示BIOS菜单的提示后,关闭电源。
- **3** 将ROM Clear SW恢复为OFF后,再次开启主机电源,按[Delete]键启动BIOS安装画面。
- **4** BIOS设置恢复到缺省值后,可手动更改所需的BIOS项目的设置。
- 5 通过[Save Changes and Exit]保存设置并重新启动。

12. DisplayPort连接器

配置DisplayPort接口。可以连接DisplayPort的显示器。

引脚分配

引脚编号	信号名称	引脚编号	信号名称
1	Lane0+	2	GND
3	Lane0-	4	Lanel+
5	GND	6	Lane1-
7	Lane2+	8	GND
9	Lane2-	10	Lane3+
11	GND	12	Lane3-
13	GND	14	GND
15	Aux+	16	GND
17	Aux-	18	HotPlug
19	GND	20	3.3V

⚠注意

- 使用数字显示器时,即使未连接模拟显示器,也可能检测到模拟显示器。它不会影响数字显示器的显示, 但请根据需要更改多制式显示器的设置。
- 要将显示器输出设置从数字输出变更为模拟输出,请根据Windows标准的画面属性更改设置。

13. FG连接器

请将接地线牢固地连接在FG端子。

⚠注意

如螺钉的紧固扭矩超过指定值,螺钉可能会断裂。 合适的螺丝的紧固扭矩是5~6kgf·cm以下。

关于本产品安装方法的说明。

1. 安装方法

1. 软件安装

将堆栈型IO模块与本产品连接之前,请先安装驱动程序。

详细的安装步骤,可参照从本公司主页下载的开发环境包的文件夹内的Help文档。

◆ 安装程序的启动

- (1) 从本公司主页下载API-xxx(WDM) 驱动程序的压缩文件。
- (2) 解压下载的文件。
- (3) 在解压后的文件夹中运行安装程序。(解压的文件夹)¥INF¥WDM¥xxx_ForWin10¥Setup.exe

2. 硬件设定

请参阅使用的堆栈型I0模块的硬件参考手册进行设定。

3. 硬件安装

让本产品识别堆栈型I0模块,称为硬件的安装。 使用多个堆栈型I0模块时,一定要完成一台设别后再安装下一个产品。

◆ 堆栈型I0模块的连接

请参照《堆栈型模块的安装(P51)》进行安装。 请务必切断电源后再安装堆栈型模块。

4. 驱动程序的初始设置

驱动程序需要先进行设置才能识别实行环境,这称为驱动程序的初始设置。

在硬件安装时,自动进行初始设置。因此,在初始设置的状态下使用时,不需要本步骤。如果想更改设备名称, 可按照以下步骤进行设定。

1 启动设备管理器

如果是Windows10,可以右击屏幕左下方的Windows标志[开始按钮],然后从菜单中启动[设备管理器]。

如果是其他Windows,可从[控制面板]中的[硬件和声音]或[系统]中选择[设备管理器]。

2 安装的硬件注册在CONTEC Devices目录下。 打开CONTEC Devices目录,选择要设定的设备,双击显示[属性]画面。
3 在[Common Settings]选项卡中输入设备设备名称,然后点击[OK]。 这里设定的设备名称在开发应用程序时是必须的。

.10 xxx-xxx 01	X "AIOXXX" Properties			×	
General Common S	Settings Driver Details	Events Res	ources		
Setting					
Device Nam	AIO000		>		
Module ID	XX			\frown	
				《显示	示连接产品的名
Diagnosis	Calibration				
			ОК	Cancel	

- 最初显示的设备名称是系统自动分配的设备名称,可以不作修改。
- 修改设备名称时,请避免多个Ⅰ0模块使用相同设备名称。

4 软件的初始设置到此结束。

5. 动作确认

确认堆栈型10模块和驱动程序是否正常,由此可以验证安装是否正确。

◆ 确认方法

连接外部设备,进行IO测试并确认实行环境。

外部设备的连接方法,请参照使用的堆栈型10模块的参考手册。

动作确认,使用驱动程序的诊断程序。

在设备属性[Common Settings]画面点击[Diagnosis]按钮,启动诊断程序。

AIO XXX-XXX-XXXX "AIOXXX" Properties	×
General Common Settings Driver Details Events Resources	
_ Setting	
Device Name AlO000	
Module ID XX	※显示连接产品的名称
Diagnosis Calibration	
ОК	Cancel

使用诊断程序可以容易地确认10模块的简单动作。

图为模拟输入输出模块的诊断程序画面。

🔍 CONTEC D	AGNOSIS PROGRAM	for Analog Input/Outp	ut							;	X					
Device Name Device Analog Input	AI0000 AI0-163202F	T-PE	_		Releas	se Fast		.]		Slow						
Unannei Input Method Range 0: -10 - Value	0 Singleend +10V * 5.8896 CB63 (hex)	-10								<u>*</u>	記っ	₹连掛	安产品	品的名	称)
- Analog Outpu Channel		.oopback	Digital I.	/0												
Range	53: 0 · +2.5V *	•			0	۲	•	۲	۲							
Wave	© DC 0.0 C SIN C Rect	Apply	8	ß	ß	ß	2	2	2	2						
Counter Channel Value	0 C	ear to 0s00000001h		Meas	ure too	ol		D	iagnosi Exit	\$						

2. 安装不正常时

1. 事例与对应方法

◆ 诊断程序运行,但应用程序不运行的时候

诊断程序是使用API-xxx(WDM)的函数制作的。一般诊断程序可以运行时,其他应用程序也可运行。 如果发送上述现象,请确认以下事项,重新修改程序。

- 确认函数的返回值。
- 参考示例程序的源代码。

2. 不能解决的时候

请附上诊断程序产生的《诊断报告》,咨询技术支持中心。

3. 卸载驱动程序

详细的卸载步骤请参照驱动程序的帮助文件。

1. 卸载设备驱动程序

设备驱动程序的卸载由[控制面板]的[程序和功能]执行。

选择[Windows Driver Package-CONTEC (xxxx) Contec], 点击[uninstall/Change]。

2. 卸载开发环境

从[控制面板]的[程序和功能]中卸载开发环境。 选择[CONTEC API-***(WDM) X.XX (Develop)]],点击[uninstall/Change]。

介绍将本产品安装在DIN轨道上的方法、与外部设备连接的线缆制作方法。

1. 主机设置

1. 设置条件

◆ 设置方向

请按下图以0°的角度安装在DIN导轨上。 其他方向不能充分散热等,不能满足本产品的温度要求,有可能发生问题,应避免。

DIN导轨的安装方向

◆ 本产品与周围的距离

本产品以箱体周围50mm的多个测温点的温度作为使用环境温度。 使用时请调整气流,使各个测量点的温度全部控制在使用环境温度范围内(- 20 ~ + 60℃)。

只使用本控制器时

连接堆栈型I0模块时

⚠注意

- 即使环境温度在使用范围内,如果附近有高温发热的机器,也会受到辐射的影响,本产品的温度上升,可能会导致动作不良。
- 除了可以通过空调调节内部温度以外,应避免将本产品设置在完全封闭的空间。如长时间使用时,因温度 上升可能会导致产品运行不良并发生故障。
- 经常在高温环境下使用时,产品寿命会变短,应实施强制空冷的对策。

环境温度的降额设计

根据负载的使用情况,使用环境温度不同。

- -20 ~ +60℃(1000BASE-T使用时: -20 ~ +55℃): USB负载限制 3端口 合计900mA以下 未连接堆栈型模块
- -20 ~ +55℃(1000BASE-T使用時: -20 ~ +50℃):未连接堆栈型模块
- -20 ~ +55℃(1000BASE-T使用時: -20 ~ +50℃): USB负载限制 3端口 合计900mA以下 连接堆栈型模块

2. 在DIN导轨上的安装/拆卸

本产品务必安装在DIN轨道上使用。

⚠注意

堆栈型模块间的连接器没有锁定机制,因此在插拔电缆、操作开关、携带等时候,模块之间可能会发生相互 移动的情况。

在运行过程中如模块移位和断开连接,可能会导致故障。

为避免模块之间的连接脱落,务必将本产品和扩展模块安装在DIN轨道上使用。

解除固定钩的锁定状态。
 当固定钩难以扳动时,可使用一字螺丝刀等解除锁定。

2 ①将主机上侧的搭钩挂在DIN轨道上, ②将主机下侧压入DIN轨道上。

(1)

3 将固定钩往上推将其锁定,这样就将主机固定到DIN导轨上。

1 解除固定钩的锁定状态。 当固定钩难以扳动时,可使用一字螺丝刀等解除锁定

使用一字螺丝刀解除锁定

可使用一字螺丝刀解除固定钩锁。

将一字螺丝刀(宽8mm以下)顶端插入固定钩插入孔内,旋转90°解除锁定。

2 ①先把主机下侧拉出 ②再把主机往上抬,将其从DIN轨道上拆下。

3. 堆栈型I0扩展模块的安装

⚠注意

- 安装和拆卸模块时,请先关闭本机的电源。
- •务必在确认本机及堆栈型模块的LED熄灭后,再进行安装或拆卸。
- 安装时请务必使用固定钩,并确认堆栈型模块固定在DIN轨道上。

◆ 安装方法

1 将安装在DIN轨道上的本机侧面端盖滑动后取下。

2 解除堆栈型模块固定钩(2个)的锁定状态。 当固定钩难以扳动时,可使用一字螺丝刀等解除锁定。

3 将已安装好的控制器(或堆栈型模块)的轨道与正在安装堆栈型模块的轨道相合。 轨道匹配后,再将堆栈型模块滑到最里面。

4 将固定挂钩(2个)锁定,把堆栈型模块固定在DIN轨道上。

5 将端盖滑动到堆栈型模块上进行安装。

1 滑动堆栈型模块的端盖并拆下。

2 解除堆栈型模块固定钩(2个)的锁定状态。 当固定钩难以扳动时,可使用一字螺丝刀等解除锁定。

使用一字螺丝刀解除锁定

使用一字螺丝刀解除固定钩锁定有两种方法。 可选择任意一种使用。

• 用杠杆原理的解除方法

用一字螺丝刀(宽度4.5mm以下)插入固定钩的插入孔,以支点支撑螺丝刀,用杠杆原理解除锁定。

• 旋转解除的方法

将一字螺丝刀(宽度8mm以下)顶端插入固定钩插入孔内,旋转90°解除锁定。

3 滑动并拆卸堆栈型模块。

2. 连接外部机器

本产品与外部设备相连时, 需使用附件的连接器制作连接电缆。

下面说明使用附件连接器制作连接电缆的步骤。

3芯连接器电缆的制作例

【适用线材】: AWG20-16

1 将剥离7±0.5mm护套的线材插入连接器开口部。

2 用一字螺丝刀拧紧固定线材的螺丝,以免线材脱落。

⚠注意

- 拿着电缆拆卸连接器容易引起断线,务必拿着连接器本体进行拆卸。
- 附件连接器的紧固扭矩为0.19N·m。
- 连接附件连接器的线材, 应剥离护套7±0.5mm后使用。

6芯连接器电缆的制作例

【适用线材】: AWG28-16

- **1** 将剥离9±0.5mm护套的线材插入连接器开口部。
- 2 用一字螺丝刀拧紧固定线材的螺丝,以免线材脱落。

⚠注意

- 拿着电缆拆卸连接器容易引起断线,务必拿着连接器本体进行拆卸。
- 附件连接器的紧固扭矩为0.19N·m。
- 连接附件连接器的线材, 应剥离护套9±0.5mm后使用。

3. 连接电缆

1. 电源

◆ 电源电缆

电源电缆使用如下规格。

电缆	双绞线(在使用单线电缆时,请将两股电线扭合)
电缆直径	AWG20-16(0. 5 mm ² ~ 1.25 mm ²)
电缆长度	3m以下

※电源连接器的详细信息及引脚定义参照『电源连接器(P22)』。

◆ FG电缆

FG电缆使用如下规格。

电缆直径	AWG18-16(0.75mm ² \sim 1.25mm ²)
------	---

◆ 外部电源规格

本产品根据堆栈型模块的连接台数,设计为使用40W-120W电源运行。电源应使用满足以下要求的电源。

电压升至24V的 所需时间	2ms ~ 30ms以内
电缆	耐温75℃以上的铜线。

推荐电源为选配件的CPS-PWD-90AW24-01 (CONTEC)。

⚠注意

外部电源的最大输出电流与本产品的最大消耗电流相比余量不够时,可能因启动时的冲击电流和负荷变动而 发生动作异常,或因外部电源的老化而发生启动不良。

2. LAN

♦ 网线

网线使用如下规格。

类别	类别5以上、1000Mbps的场合类别5e以上
电缆长度	100m以下

※LAN端口的详细信息及引脚定义参照《LAN端口(P23)》。

3. RS-232C

◆ RS-232C电缆

RS-232C接口的连接调制解调器或个人电脑等时,根据连接的外部设备不同,使用的电缆可能不同。 请在确认连接的外部设备的规格之后,根据其规格使用直通或交叉电缆。 并且,在需要握手信号时,请根据规格进行适当的处理。 RS-232C串行端口的详细信息和引脚分配可参照"**RS-232C串行口(P26)**"。

◆ 与外部机器的连接

本产品与外部设备相连的RS-232C电缆的连接示例。

与调制解调器的连接例

与电脑的连接例

与机器的连接例

4. 数字输入

◆ 数字输入电缆

数字输入电缆使用以下规格。

电缆	耐温75℃以上的铜线。
电缆直径	AWG28 - 16
电缆长度	根据使用环境

数字输入连接器的详细信息和引脚分配请参照"通用输入输出/RAS连接器(P21)"。

5. 数字输出

◆ 数字输出电缆

数字输出电缆使用以下规格。

电缆	耐温75℃以上的铜线。
电缆直径	AWG28 - 16
电缆长度	根据使用环境

数字输出连接器的详细信息和引脚分配请参照"通用输入输出/RAS连接器(P21)"。

4. USB防脱落支架的安装

本产品附带防止USB电缆脱落用的固定支架。

1. USB电缆的固定

1 本产品配置有安装USB防脱落支架的孔。没有锁定机构的USB电缆上使用捆扎带固定在支架上可以防止USB 电缆脱落。请根据电缆的连接状况使用。

从散热器侧观察的示意图

2 下图为捆扎带的使用例子。请避免使连接器受力过大。

关于FLASH ROM BIOS中内置的American Megatrends公司(以下简称AMI)的设置程序的说明。

CPS-BXC200 参考手册

1. 概要

使用BIOS设置程序更改系统的基本设置,设置信息保存在CMOS RAM中,因为有后备电池供电,在关闭计算机电源后,设置的信息也能被保持。

下面对BIOS设置系统构成的步骤进行说明。

1. 进入设置

打开电脑电源后,AMI BIOS立即启动。BIOS读取保存在CMOS RAM中的系统信息,开始确认和设置系统。这个过程完成后,BIOS会搜索并启动磁盘上的操作系统,并将控制权交给操作系统。

在BIOS控制电脑时,可以通过两种方式启动BIOS设置程序:

- 接通电脑电源后,立即按<De1>或<Esc>。
- POST(开机自检)中,在画面上显示 "Presesor<ESC>to enter SETUP"的信息时,按或<Esc> 键。

上面的信息消失后,按键将无效,必须重启电脑后再度进入设置程序。

如果USB Keyboard Support被设定为Enabled,可以同时按<Ctrl>、<Alt>、键重启电脑。

2. 设置操作

通常,使用箭头键在项目之间移动,然后按<Enter>选择。使用<+><->键修改项目值。按<F1>显示帮助,按<Esc>结束设置。设置程序操作的键盘对应表如下所示。。

键	功能
†	转到上一个项目。
Ļ	转到下一个项目。
+	转到左边的条目(菜单栏)。
\rightarrow	转到右边的条目(菜单栏)。
ESC	主菜单:不保存变更而退出。 子菜单:退出当前页面,并显示下一级菜单。
Enter	转到选定的项目。
+	增加数值或改变选择项。
—	减少数值或改变选择项。
F1	显示帮助画面。
F2	恢复前次的CMOS设定值。
F3	恢复BIOS中的缺省值。
F4	将所有设定变更保存至CMOS RAM后结束设置。

3. 帮助

按下<F1>时,小的弹出窗口将显示正在查看项目的相应键操作或选项。按<Esc>键隐去帮助窗口。

4. 问题发生时

如果更改了系统设置并保存后电脑无法启动的话,可能需要修理。除了完全理解的项目的设置以外请不要更改。 特别建议不要更改任何CPU芯片组的默认设置。这些默认值是AMI公司和系统制造商为了最大限度保证性能和可 靠性而充分考虑后选择的值。即使将这些设定稍作变更,也有可能发生不得不修理的情况。

5. 注意事项

本章的内容有时会在没有预告的情况下变更。

2. 主菜单

进入设置程序后, Aptio Setup Utility的主菜单会显示在画面上。可以通过按右箭头或左箭头键选择各个子菜单。

Aptio Se	chipset	(C) 20XX American Me	gatrends, Inc.	Save & Evit
	Onipset	Occurry	Boot	
BIOS Information				
BIOS Vendor	Americ	an Megatrends		
Core Version	5.12	annioganonao		
Compliancy	UEFI 2.	5: PI 1.4		
Project Version	CPS20	0C x.xx x64		
Build Data and Time	xx/xx/xx	XX XX:XX:XX		
CPU Configuration				
Apollolake SoC	xx Step	ping		
Microcode Patch	xx	•		
MRC Version	XX		→←:Se	lect Screen
PMC FW Version	XX		↑ ↓ :Se	lect Item
TXE FW Version	XX		Enter:Se	elect
GOP Driver	XX		+/-:Char	nge Opt.
			F1:Gene	eral Help
			F2:Prev	ious Values
Memory Information			F3:Optin	nized Defaults
Total Memory	XXXX ME	3	F4:Save	& Exit
Memory Speed	xxxx M	Hz	ESC:Ex	it
System Date	[Week I	Day MM/DD/YYYY]		
System Time	[HH:MN	1:SS]		
Access Level	Adminis	strator		
Version	v vv vvvv Convright (notrondo los	

(可能与实际显示有所不同。)

1. 设置项目

可以选择以下项目的子菜单。

∎Main

确认系统的基本构成。还可以设置语言和日期。

Advanced

设置更高级的功能。

■Chipset

确认有关芯片组的设置。

Security

有关安全的设置,可设置保护系统安全的密码。

Boot

有关系统启动的设置。

■Save & Exit

可加载/保存设置项目或退出设置菜单。

3.Main

Main菜单主要确认系统的基本构成。

Main菜单显示以下项目

项目	一般显示	说明
BIOS Vendor	American Megatrends	显示BIOS的制造商。
Core Version	5.12	显示BIOS的核心版本。
Compliancy	UEFI 2.5; PI 1.4	显示UEFI的版本。
Project Version	CPS200C x.xx x64	显示BIOS版本
Build Data and Time	xx/xx/xxxx xx:xx:xx	显示BIOS创建日期。
Access Level	Administrator	显示访问权限级别。

Main菜单可设置以下选项

项目	选项	说明
System Date	Week Day Month / Day / Year	设置系统的日期。 星期是自动设置的。
System Time	Hour : Minute : Second	设置系统时间。

4. Advanced

Advanced菜单设定系统的高级功能。

Aptio Setup Utility - Copyright (C) 20xx American Megatrends, Inc.				
Main Advanced	Chipset	Security	Boot	Save & Exit
 Trusted Computing ACPI Settings RAS Configuration SMART Settings Super IO Configuration H/W Monitor CPU Configuration CSM Configuration 			→←:Selt ↑ ↓ Selt Enter:Se +/-:Chan F1:Gene F2:Previu F3:Optim F4:Save ESC:Exit	ect Screen ect Item lect ge Opt. ral Help Jus Values Jus Values Lized Defaults & Exit
Ver	sion x xx xxxx Convrigh	t (C) 20xx American M	agatrande Inc	

■Trusted Computing

设置TPM2.0的。

■ACPI Settings

设置ACPI。

■RAS Configuration

设置RAS。

■SMART Settings

请勿更改设置。

■Super IO Configuration

设置Super IO。

■H/W Monitor

确认CPU温度等。

■CPU Configuration

请勿更改设置。

■CSM Configuration

请勿更改设置。

1. Trusted Computing

有关TPM2.0的设置项目。

Aptio Setup Utility - Copyright (C) 20xx American Megatr Advanced	ends, Inc.
Advanced TPM Configuration TPM2.0 Support [Disabled] NO Security Device Found	→←:Select Screen ↑ ↓:Select Item Enter:Select +/:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit
Version x.xx.xxxx. Copyright (C) 20xx American Megatre	ends, Inc.

Trusted Computing

项目	选项	说明
TPM2.0 Support	Disabled Enabled	设置是否启用TPM2.0。 保存设置并重启之后,TPM2.0的设备会成为有效 状态。

TPM2.0 Support (仅限Enabled时显示)

项目	选项	说明
SHA-1 PCR Bank	Disabled Enabled	请勿更改缺省设置。
SHA256 PCR Bank	Disabled Enabled	请勿更改缺省设置。
Pending operation	TPM Clear None	请勿更改缺省设置。
Platform Hierarchy	Disabled Enabled	请勿更改缺省设置。
Storage Hierarchy	Disabled Enabled	请勿更改缺省设置。
Endorsement Hierarchy	Disabled Enabled	请勿更改缺省设置。
TPM2.0 UEFI Spec Version	TCG_1_2 TCG_2	请勿更改缺省设置。
Physical Presence Spec Version	1.2 1.3	请勿更改缺省设置。

2. ACPI Settings

设置ACPI电源管理。

l	Aptio Setup U Advanced	Jtility - Copyright (C) 20xx Americar	n Megatrends, Inc.
I	ACPI Settings		
	Wake On Lan Control on S5 Wake On RI Control on S5 Resume On RTC Alarm	[Disabled] [Disabled] [Disabled]	→←:Select Screen ↑↓:Select Item Enter:Select +/:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit
			ļ

ACPI Settings

项目	选项	说明
Wake on Lan Control on S5	Disabled	设置网络唤醒功能。
	Enabled	
Wake on RI Control on S5	Disabled	设置铃声唤醒功能。
	Enabled	
Resume on RTC Alarm	Disabled Fixed Time Dynamic Time	设置自动定时开机功能。 启用时,在下一项中设置自动开机的时间。

Resume On RTC Alarm (仅限Fixed Time时有效)

项目	选项	说明
RTC Wake up Hour	0 - 23	设置自动开机的小时。
RTC Wake up Minute	0 - 59	设置自动开机的分。
RTC Wake up Second	0 - 59	设置自动开机的秒。

Resume On RTC Alarm (仅限Dynamic Time时有效)

项目	选项	说明
Wake up minute increase	1 - 5	设置在关机几分钟后自动开机。

3. RAS Configration

设置RAS。

Aptio Setup Utility Advanced	- Copyright (C) 20xx American	Megatrends, Inc.
RAS Configuration		
Firmware Version	хх	
WDT during Boot of the OS	[Disabled]	
Input Pin0 Function Input Pin1 Function	[Input] [Input]	
		→←:Select Screen ↑ ↓ :Select Item Enter:Select +/-:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit
Version x xx xxxx	Convright (C) 20xx American	Megatrends Inc

(可能与实际显示不同。)

RAS Configuraiton

项目	选项	说明
WDT during Boot of the OS	Disabled Enabled	设置是否在OS启动时启用WDT功能。
Input PinO Function	Input	显示PI0的功能。
Input Pinl Function	Input Reset Button Power Button	设置PI1的功能。

WDT during Boot of the OS (仅限Enabled时有效)

项目	选项	说明
WDT Value (Seconds)	0 - 254	设置WDT功能的定时时间。
WDT Timeup Function	None Reset Shutdown Output High Output Low	设置WDT功能的超时动作。 None: 无。 Reset: 重启电脑。 Shutdown: 关机。 Output High: 输出高电平。 Output Low: 输出低电平。

4. Super 10 Configuration

设置Super IO。

Aptio Setup U Advanced	tility - Copyright (C) 20xx American	Megatrends, Inc.	
Advanced Super IO Configuration Super IO Chip Serial Port Configuration Ext-Serial Port Configuration	NCT6104D		
		→ ← :Select Screen ↑ ↓ :Select Item Enter:Select +/:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit	
Version x.xx.xxxx. Copyright (C) 20xx American Megatrends, Inc.			

Super IO Configuration

项目	选项	说明
Serial Port Configuration	Disabled Enabled	设置是否启用串行口A。
Ext-Serial Port Configuration	_	请勿更改设置。

5. H/W Monitor

确认CPU温度等硬件监视信息。

Aptio Setu Advanced	b Utility - Copyright (C) 20xx America	n Megatrends, Inc.	
Pc Health Status System temperature CPU temperature VCORE 5VSB 5V VNN AVCC VSB3 VCC2 VSB3 VCC3V VBAT	: +40 C : +52 C : +1.080 V : +5.216 V : +5.216 V : +0.912 V : +3.296 V : +3.296 V : +3.296 V : +2.992 V	→←:Select Screen ↑↓:Select Item Enter:Select +/-Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit	
Version x.xx.xxxx. Copyright (C) 20xx American Megatrends, Inc.			

(可能与实际显示不同。)

5. Chipset

设置芯片组的高级功能。

Main	Advanced	Chipset	Boot	Security	Save & Exit
 North Bridg South Bridg 	ge ge			→←:Seler ↑ ↓:Seler Enter:Sele +/-:Chang F1:Genera F2:Previo F3:Optimi F4:Save & ESC:Exit	ct Screen ct Item ect e Opt. al Help is Values zed Defaults i Exit

■North Bridge

请勿更改设置。

■South Bridge

设置有关南桥的配置。

1. South Bridge

设置有关南桥的配置。

Aptio Setu	up Utility - Copyright (C) 20xx American Chipset	Megatrends, Inc.
 HD-Audio Configuration SATA Drives USB Configuration LAN Configuration 		
OS Selection Restore AC Power Loss	[Windows] [Power On]	
		→←:Select Screen ↑↓:Select Item Enter:Select +/-:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit
Version x	x.xx.xxxx. Copyright (C) 20xx American	Megatrends, Inc.

South Bridge

项目	选项	说明
HD-Audio Configuration	Enabled Disabled	设置是否启用HD Audio。
SATA Drives	2. SATA Drives参照	-
USB Configuration	3. USB Configuration参照	-
LAN Configuration	Enabled Disabled	设置是否启用网口。
OS Selection	_	请勿更改设置。
Restore AC Power Loss	Power Off Power On Last State	设置供电开始时是否联动电脑启动。 Power OFF: 按下电源开关后,电脑才启动。开始供电时电脑 不启动。 Power ON: 开始供电时电脑自动启动。 Last State: 在电脑启动状态下关闭电源后,电脑将在下次通 电时自动启动。
2. SATA Drives

设置SATA控制器的配置。

1	Aptio Setup Utility - Copyright (C) 20xx American Megatrends, Inc. Advanced				
	SATA Drives Chipset-SATA Controller Configuration Chipset SATA SATA Mode Selection M.2 (Port 0) Port 0 CFast (Port 1) Port 1	[Enabled] [AHCI] xxxx [Enabled] xxxx [Enabled]	→←:Select Screen ↑↓:Select Item Enter:Select +/-:Change Opt. F1:General Help F2:Previous Values F3:Optimized Defaults F4:Save & Exit ESC:Exit		
	Version x.xx.xxxx. Copyright (C) 20xx American Megatrends, Inc.				

Chipset-SATA Controller Configuration

项目	选项	说明
Chipset SATA	Enabled Disabled	设置SATA控制器是否启用。
SATA Mode Selection	AHCI	显示SATA设备模式。
Port 0	Enabled Disabled	设置是否启用SATA PortO。
Port 1	Enabled Disabled	设置是否启用SATA Port1。
Write Protect	Disabled / Enabled	硬件写保护可分别应用于每个端口的固态硬盘。 只能设置 CPS-BXC200-xx0xM05x 和 CPS-BXC200-xx0xL07x。

3. USB Configuration

设置USB口的配置。

Aptio Setup Utility - Copyright (C) 20xx American Megatrends, Inc. Chipset					
USB Configuration USB Module Version USB Controllers: 1 XHCI USB Devices: 1 Drives, Keyboard, 1 Mouse Legacy USB Support	XX [Disabled]	→←:Select Screen			
USB Mass Storege Driver Support XHCI Mode USB Overcurrent	[Enabled] [Enabled] [Disabled]	Files Select +/-:Change Opt. F1:General Help F2:Previous Values			
	[2102004]	F3:Optimized Defaults F4:Save & Exit ESC:Exit			
Version x.xx.xxxx. Copyright (C) 20xx American Megatrends, Inc.					

USB Configuration

项目	选项	说明
Legacy USB Support	Disabled Enabled	请勿更改缺省设置。
XHCI Hand-off	Enabled Disabled	请勿更改缺省设置。
USB Mass Storage Driver Support	Disabled Enabled	设置是否在BIOS中支持USB存储设备。
USB Overcurrent	Enabled Disabled	请勿更改缺省设置。

6.Security

设置系统的安全性。

Aptio Setup Utility - Copyright (C) 20xx American Megatrends, Inc.					
Main	Advanced	Chipset	Security	Boot	Save & Exit
Password Desc If ONLY the Adn then this only lin only asked for w If ONLY the use is a power on py boot or enter Se have Administra The password le In the following Minimum length Maximum length Maximum length Setup Administr User Password HDD Security C P0:xxxx P1:xxxx ► Secure Boot	ription ninistrator's passw rits access to Set when entering Set r's password and mus setup. In Setup the tor rights. ength must be range: n ator Password onfiguration:	vord is set , up and is up. et, then this t be entered to User will 3 20		→←:Sele ↑↓:Sele Enter:Sel +/-Chang F1:Gener F2:Previc F3:Optim F4:Save i ESC:Exit	ect Screen ect ltem ect ge Opt. al Help vus Values ized Defaults & Exit
	Version x.	xx.xxxx. Copyright (C) 20xx American M	legatrends, Inc.	

■Administrator Password

设置BIOS的管理员密码。

按<Enter>键时,如下所示要求输入新密码:

Administrat	or Password	
Create New Password	[****]
Confirm New Password	[****]

请重复输入3个字母以上20个字母以下的密码。

需要清除密码时,请进入Administrator Password的输入画面,删除密码。

■User Password

设置用户密码。

按<Enter>键时, 按如下所示要求输入新密码:

User Password			
Create New Password	[****]	
Confirm New Password	[****]	

请重复输入3个字母以上20个字母以下的密码。

需要清除密码时,请进入User Password的输入画面,删除密码。

■HDD Security Configuration

连接SATA设备时显示。

请勿更改。

■Secure Boot menu

请勿更改。

⚠注意

请牢记设置的密码。 忘记密码时,可能需要付费维修。

7. Boot Configuration

设置和启动有关的配置。

Aptio Setup Utility - Copyright (C) 20xx American Megatrends, Inc.				
Main Advanced	Chipset	Security	Boot	Save & Exit
Boot Configuration Setup Prompt Timeout Bootup NumLock State Quiet Boot Boot Option Priorities Boot Option #1 Boot Option #2 Boot Option #3 CD/D/D BOM Drive BBS Bridge	1 [On] [Disabled [xxxxxxxx [xxxxxxxx]]]		
EDD/D Trive BBS Priorities Floppy Drive BBS Priorities Fast Boot	(Disabled]	→ ←:se ↑ ↓:se Enter:Se +/:char F1:Gene F2:Previ F3:Optir F4:Save ESC:Exi	lect Screen lect Item elect rral Help ous Values nized Defaults & Exit t

Boot Configuration

项目	选项	说明
Setup Prompt Timeout	Π	设置进入BIOS设置前的等待用户按 <esc>的时间。</esc>
		单位:秒
Bootup NumLock State	On	设定系统启动时的NumLock状态。
	Off	
Quiet Boot	Disabled	请勿更改缺省设置。
	Enabled	
Fast Boot	Disabled	请勿更改缺省设置。
	Enabled	
Boot Option #x	XXXXXXXX	设置不同设备的启动优先顺序。*1
	(指定任意设备)	
CD/DVD ROM Drive RBS Priorities	XXXXXXXX	设置已连接的CD/DVD驱动器的启动顺序。*1
CD/ DVD ROW DIIVE DDS TITOITUES	(指定任意设备)	
Hard Drive RRS Priorities	XXXXXXXX	设置已连接的HDD/CFast/USB可移动驱动器的启
	(指定任意设备)	动顺序。*1
Flappy Drive PPS Prioritian	XXXXXXXX	设置已连接的USB Flopy驱动器的启动顺序。*1
TTOPPY DITIC DDS TITOTICES	(指定任意设备)	

*1: 只有当设备已连接时显示。

CPS-BXC200 参考手册

⚠注意

在Boot Option#x中可选择的设备仅限于xxxx Drive BBS Prorities中设定设备的类别。

8. Save & Exit

恢复缺省值,保存设置项目或退出设置程序。

Main	Aptio Seti Advanced	Chipset	Security	Boot	Save & Exit
Main Save Ch Discard I Save Ch Discard I Save Ch Discard I Default C Restore Save as Restore Boot Ove XXXXXX XXXXX Launch I	Advanced anges and Exit Changes and Reset Changes and Reset Changes Changes Changes Options Defaults User Defaults User Defaults erride (XX (XX EFI Shell from filesystem	Chipset	Security	Boot →←:Sele ↑↓:Sele Enter:Sel +/-:Chang F1:Gener F2:Previc F3:Optim F4:Save ES2:Es#	Save & Exit act Screen ct Item ect ge Opt. al Help us Values ized Defaults & Exit
CONTEC Disk Cop Memory Self Insp	C Utility by Test pection			ESC.EXI	

■Saving Changes and Exit

保存修改的设定值并退出设置程序。

■Discard Change and Exit

放弃修改的设定值退出设置程序。

■Save Changes and Reset

保存修改的设定值并重启电脑。

■Discard Change and Reset

放弃修改的设定值并重启电脑。

■Save Changes

保存修改的设定值。

■Discard Changes

放弃修改的设定值。

■**Restore Defaults** 恢复BIOS中的缺省值。

■Save as User Defaults

保存修改的设定值作为用户的缺省值。

■**Restore User Defaults** 恢复用户保存的的缺省值。

■Boot Override

设置从Boot Configuration菜单中设置的设备以外的设备中临时启动。 XXXX,表示可引导的设备。

■CONTEC Utility

在UEFI环境中运行的实用程序。 有关详细信息和用法,请参见下一部分。

9. CONTEC Utility

可以在UEFI环境中运行的实用程序。

■Disk Copy

执行磁盘的备份和恢复操作。

■Memory Test

执行PASSMARK公司的内存测试。

■Self Inspection 执行自检程序。

1. Disk Copy

执行磁盘的备份和恢复操作。

	Disk Copy Program Version:1.04(2018/10/30)*		
Select Source UISK: USB1:TransCemory (7399MB) [USBA:Transcend(30533MB)] M.2:GDriver GS1(30719MB) CFast:GDriver GS1(29759MB) ERASE	Select Destination Disk: [USB1:TransMemory (7399MB)] USBA:Transcend(30533MB) M.2:8Driver GS1(30719MB) CFast:GDriver GS1(29759MB)		
Select Copy Mode: Verify <mark>[Disk>Disk]</mark> Dis Data Verification: NO <mark>[YES]</mark> Start Disk Copy: <mark>[OK]</mark> CANCEL	sk>File File>Disk Disk>Cab Cab>Disk		
Now Copying(If cancel, please enter E	ESC key)		
Current:96MB,End:7399MB,Percentage:1%			

Disk Copy

项目	选项	说明
Select Source Disk	USBx: xxx M.2:xxx CFast:xxx Erase	显示已连接的USB或SATA盘。 请选择要复制的源磁盘。 选择Erase时,目标磁盘所有区域都用0x00填 入。
Select Destination Disk	USBx: xxx M.2:xxx CFast:xxx	显示连接的USB或SATA盘。 请选择要复制的目标光盘。
Select Copy Mode	Verify Disk to Disk Disk to File File to Disk Disk to Cab Cab to Disk	请选择复制模式。 Verify: 只进行磁盘比较。 Disk to Disk: 将源磁盘数据直接复制到目标磁盘上。复制的容 量是两者中较小的磁盘的容量。 Disk to File: 将源磁盘数据以文件方式复制到目标磁盘上。文 件以conback_x (x是连号)的名字保存。目标磁 盘必须是FAT32格式。即使没有完成复制,达到 目标磁盘的容量后也会结束。

项目	选项	说明
		File to Disk:
		将源磁盘数据文件复制到目标磁盘上。文件以
		conback_x (x是连号)的名字保存。源磁盘必须
		是FAT32格式。即使没有完成复制,达到目标磁
		盘的容量也会结束。
		Disk to Cab:
		将源磁盘数据以压缩文件方式复制到目标磁盘
		上。文件以conback_x (x是连号)的名字保存。
		目标磁盘必须是FAT32格式。即使没有完成复
		制,达到目标磁盘的容量后也会结束。
		Cab to Disk:
		将源磁盘数据压缩文件复制到目标磁盘上。文件
		以conback_x (x是连号)的名字保存。源磁盘必
		须是FAT32格式。即使没有完成复制,达到目标
		磁盘的容量也会结束。
		选择"Yes"时,以复制单位块时进行数据比较
	No	以确认是否正确复制,如果发生不一致,则以错
Data verification	Yes	误结束。在复制模式中选择了[Disk to Cab]和
		[Cab to Disk]的情况下不能使用。

⚠注意

- 容量不同的磁盘之间的Disk to Disk复制是按照较小的磁盘的容量进行的,所以复制后的磁盘不能保证能 正常启动操作系统。如果想保证正常启动操作系统,应在容量相等的磁盘之间进行复制,或者复制到容量 大的磁盘之后再写回到原来的磁盘。
- 备份完成后请关闭电源,从主机上取下一个磁盘。

2. Self Inspection

执行自检程序。

PCI Device Activity: [PASS]	SSD Life:[Show Only]	Temperature: [Show Only]
Host (0/ 0/0/8086/5AF0):[ACTIVE]	M.2:GBDriver GS1	MIN NOW MAX
Graphic (0/ 2/0/8086/5A84):[ACTIVE]	Erase(Min):[28]	CPU:[43 44 45]
SideBand (0/ D/0/8086/5A92):[ACTIVE]	Erase(Max):[32]	SYS:[36 36 36]
PMC (0/ D/1/8086/5A94): [ACTIVE]	Erase(Total):[32852]	Voltage:[Show Only]
Fast SPI (0/ D/2/8086/5A96):[ACTIVE]	Erase(Spec):[2976000]	MIN NOW MAX
ShareSRAM(0/ D/3/8086/5AEC): [ACTIVE]	Used: [1.10%]	VCORE: [0.896 0.896 0.896]
HD Audio (0/ E/0/8086/5A98):[ACTIVE]	CFast:GBDriver GS1	5VSB : [5.216 5.216 5.216]
CSE-HECI1(0/ F/0/8086/5A9A): [ACTIVE]	Erase(Min): [53]	5V :[5.184 5.216 5.216]
CSE-HECI2(0/ F/1/8086/5A9C): [ACTIVE]	Erase(Max):[246]	VNN :[0.920 0.920 0.920]
CSE-HECI3(0/ F/2/8086/5A9E): [ACTIVE]	Erase(Total):[306333]	AVCC :[3.296 3.296 3.296]
AHCI (0/12/0/8086/5AE3): [ACTIVE]	Erase(Spec):[192100000]	VSB3V:[3.296 3.296 3.296]
PCIe -A 0(0/13/0/8086/5AD8):[ACTIVE]	Used: [0.15%]	3VCC :[3.280 3.280 3.280]
PCIe -A 1(0/13/1/8086/5AD9): [ACTIVE]	LAN EEPROM Check: [PASS]	VBAT :[3.104 3.104 3.104]
PCIe -A 2(0/13/2/8086/5ADA): [ACTIVE]	CONTEC MAC: [PASS]	Time:[Show Only]
PCIe -A 3(0/13/3/8086/5ADB): [ACTIVE]	Unique MAC: [PASS]	Now: [2018/10/31 15:54:33]
<pre>xHCI (0/15/0/8086/5AA8): [ACTIVE]</pre>	Same CS: [PASS]	Elapsed: [23sec]
LPC (0/1F/0/8086/5AE8): [ACTIVE]	I210(B/D/F=1/0/0)	GPIO Info: [Show Only]
SMBus (0/1F/1/8086/5AD4): [ACTIVE]	MAC: [00804C5182AA]	DI(0-1):[00]
I210 LAN (1/ 0/0/8086/1533):[ACTIVE]	CS(0×03-0×2E):[CDFB]	ROMCLR: [OFF]
I210 LAN (2/ 0/0/8086/1533): [ACTIVE]	I210(B/D/F=2/0/0)	FIRMVER: [01.11]
I210 LAN (3/ 0/0/8086/1533):[ACTIVE]	MAC:[00804C5182AB]	LED Test: [Running]
CON FPGA (4/ 0/0/104C/8240):[ACTIVE]	CS(0×03-0×2E):[CDFB]	BEEP Test: [Press A-K keys]
PciBridge(5/_0/0/1221/E100):[ACTIVE]	I210(B/D/F=3/0/0)	
LPC Device Activity: [PASS]	MAC:[00804C5182AC]	
KBC: [ACTIVE]	CS(0×03-0×2E):[CDFB]	
HWM: [ACTIVE]		!/ \)))
UARTB: [ACTIVE]		
COM Resource: [PASS]		Product Name:CPS-BXC200
Addr(3F8):[PASS]		BIOS Version:1.00
IRQ(4/Edge/H):[PASS]		APP Version:1.02 2018/10/23

Self Inspection

项目	选项	说明
PCI Device Activity	PASS FAIL	对应该存在的PCI设备进行检查。如果所有设备 都存在,则显示[PASS],如果有一个设备没有被 确认,则显示[FAIL]。
Host		
Graphic		
Sideband		
РМС		
Fast SPI		
SharedSRAM		
HD Audio		对应该存在的PCI设备进行生存确认。正确存在的情况下显示[ACTIVE],无法确认存在的情况下显示[INACTV]。
CSE-HECI1	ACTIVE	
CSE-HECI2		
CSE-HECI3		
АНСІ		
PCIe -A O		
PCIe -A 1		
PCIe -A 2		
PCIe -A 3		

CPS-BXC200 参考手册

项目	选项	说明
x HC I		
LPC		
SMBus		
I210 LAN 1,2,3		
CON FPGA		
Pci Brige		
LPC Device Activity	PASS Fail	对应该存在的LPC设备进行生存确认。如果所有 设备都存在,则显示[PASS],如果有一个设备没 有被确认,则显示[FAIL]。
КВС		对应该存在的LPC设备进行生存确认。正确存在
HWM	ACTIVE	的情况下显示[ACTIVE],无法确认存在的情况下
UARTB	INAUIV	显示[INACTV]。
COM Resource	PASS Fail	检查COM的资源,确认是否设定了准确的地 址:0x3f8, IRQ:4(Edge / Active High)。
SSD Life	表示のみ	显示关于SATA Drive的寿命信息。正确显示的只 有本产品标准搭载的M.2 SATA Drive。
LAN EEPROM Check	PASS Fail	确认LAN EEPROM是否是正确的数据。在没有找到 LAN设备的情况下,无法判定该设备。
CONTEC MAC	PASS Fail	确认是否写了CONTEC的MAC数据。
Unique MAC	PASS Fail	确认MAC数据是否是独立的。
Same CS	PASS Fail	确认MAC数据以外的校验和是否相同。
I210(B/D/F=x/x/x)		
МАС	****	显示各端口的MAC数据。
CS	XXXX	显示各端口的MAC数据以外的校验和。
Temprature	MIN NOW MAX	显示自检程序动作中CPU温度、系统温度的最低 值、最高值、现在值。
Voltage	MIN NOW	显示自检程序动作中各电压的最低值,最高值, 现在值。

项目	选项	说明
	MAX	
Time	Now	显示当前时间及自检程序运行的经过时间。
lime	Elapsed	
GPIO Info		显示GPIO的信息。
DI(0-1)	00	显示输入位0、1的信号电平。
DOMCI D	OFF	显示ROM清除开关的状态。
ROMULK	ON	
LED Test		自检程序运行期间,3个LED每隔一定时间闪烁。
	A V Laure	按A、S、D、F、G、H、J、K任意一个键,可以发
BEEP lest	A-K Keys	出不同音阶的BEEP音。
		PCI Device Activity、LPC Device Activity、
综合判断	PASS	COM Resource、LAN EEPROM Check如果全部项目
	FAIL	合格,则显示PASS,如果有1个不合格,则显示
		FAIL.

关于本产品的规格和外形尺寸,型号名称等的说明。

1. 规格

1. 规格

功能规格

项目		内容	
CPU		Intel® Atom™ Processor x7-E3950 1.6 GHz	
BIOS		AMI BIOS	
内存		204针SO-DIMM插座×1、 PC3L-10600(DDR3L 1333) ECC	
		4GB 8GB	
显示控制器		Intel® HD Graphics 505 (CPU内置)	
最大显示分辨率	模拟RGB	1920 x 1200 @ 60Hz	
	DisplayPort	3840 x 2160 @ 60Hz	
显示接口	·	模拟RGB×1 (15芯D-SUB连接器)、DisplayPort×1	
M.2 卡槽	槽 1插槽、M. 2 2242、SATA III CPS-BXC200-xx0xP03: M. 2卡 (pSLC、32GB) *1 CPS-BXC200-xx0xP05: M. 2卡 (pSLC、64GB) *1 CPS-BXC200-xx0xM03: M. 2卡 (MLC、32GB) *1 CPS-BXC200-xx0xM05: M. 2卡 (MLC、64GB) *1 CPS-BXC200-xx0xM05: M. 2卡 (MLC、64GB) *1 CPS-BXC200-xx0xM05: M. 2卡 (MLC、128GB) *1		
CFast卡槽		1插槽、CFast CARD Type I、可引导	
LAN *2		Intel I210IT控制器,	
		1000BASE-T/100BASE-TX/10BASE-T 3端口 (RJ-45连接器) (Wake On LAN对应)	
USB		USB 3.0标准 3端口 (TYPE-A连接器×3)	
串口		RS-232C(通用) 1端口 (SERIAL PORT A) 9芯D-SUB连接器 (针)	
		波特率: 50 ~ 115,200bps	
看门狗定时器(WDT)		WDT: 软件可编程, 1sec~255sec(超时重启/关机)	
安全(TPM)		TCG TPM2. 0	
通用输入输出		绝缘:输入2点(其中1点用于与远程复位或远程电源0N切换) 绝缘:输出1点(与WDT外部输出切换使用)	
硬件监视		CPU温度、电源电压的监控	
RTC/CMOS		锂电池备用电池寿命: 10年以上 RTC精度(25℃): ±3分/月(CPU内置RTC)	
电源管理		基于BIOS的电源管理设定、PowerOn by Ring/Wake On Lan功能、 PC98/PC99ACPI电源管理支持	
堆栈总线		最大8台(堆栈型模块的消耗电流合计在3.3A以下)	
RAS		1端口(3.81mm 间距 6pin)	
电源	额定输入电压	24VDC	
	输入电压范围	$24V \pm 10\%$	
	功耗 (Max.)	24V 1.5A(USB接口、无堆栈总线电源供给) 24V 4.8A(USB接口、有堆栈总线电源供给)	
	外部设备	CFast卡槽: +3.3V 0.5A (500mA×1)、USB3.0接口: +5V 2.7A	

	项目	内容
	供电容量	(900mA×3) 堆栈总线接口: 24V 3.3A
外形尺寸(mm)		76(W)×94(D)×124.8(H) (不包括突出物)
重量		1.1kg
设置方法		35mm DIN 导轨安装
操作系统(仅限预装)	系统机型)	Windows 10 IoT Enterprise LTSB 2016 64bit(日语/英语/汉语/ 韩语)

*1 存储装置的容量是1GB以10亿Byte计算时的值。从OS中可以识别的容量可能比实际值少。

*2 使用1000BASE-T时请注意周围温度。

设置环境条件

Ţ	页目	内容
使用环境温度*3		-20 ~ +70℃(1000BASE-T使用时 : -20 ~ +65℃)气流0.7m/s -20 ~ +60℃(1000BASE-T使用时 : -20 ~ +55℃)没有气流
使用环境湿度		10 ~ 90%RH(不结霜)
储存环境温度		$-20 \sim +60$ °C
储存环境湿度		10 ~ 90%RH(不结霜)
悬浮粉尘		不严重
腐蚀性气体		没有
抗干扰性	线路抗干扰性	AC电源线/±2kV *4 信号线/±1kV(IEC61000-4-4 Level 3、EN61000-4-4 Level 3)
	静电抗扰度	接触放电/±4kV(IEC61000-4-2 Level 2、EN61000-4-2 Level 2) 气隙放电/±8kV(IEC61000-4-2 Level 3、EN61000-4-2 Level 3)
抗振性	正弦振动扫描试验	10 ~ 57Hz/片 振幅0.15mm、57 ~ 150Hz/2.0G X、Y、Z方向40分(JIS C60068-2-6标准、IEC60068-2-6标准)
抗冲击性		15G X、Y、Z方向11ms半正弦波 (JIS C 60068-2-27标准、IEC 60068-2-27标准)
接地		D种接地(原第三种接地)、SG-FG/非传导
取得規格		VCCI A级、FCC A级、 CE标记(EMC指令A级、RoHS指令)、UKCA、UL

*3 根据设置方向和负荷状态进行降额设计。

*4 使用电源单元 (CPS-PWD-90AW24-01) 的场合。

2. 电源管理功能

支持ACPI (Advanced Configuration and Power Interface)。

- 对应ACPI v2.0
- 支持硬件自动唤醒

3. 关于电源的要求

为了在本产品上的高速CPU中获得高可靠性的性能,需要洁净稳定的电源。另外,电源的品质更加重要。请确认 提供从最小21.6V到最高26.4V范围的DC电源。

♦ 耗电量

在一般配置中,本产品根据堆栈型模块的连接台数设计成使用40W-120W电源。另外,电源必须满足以下要求。

● 电压上升时间: 2m-30ms

下表显示了电源对DC电压的容许范围

DC电压	容差范围
+ 24V	+ 21.6V - 26.4V

⚠注意

- 电源电压的变动超过产品规格的情况下,请使用稳压器。
- 干扰强的情况下,请使用绝缘变压器(降噪变压器)。
- 绝对避免电源线和输入输出信号线捆扎、接近或并行走线。
- 需要防雷对策时,请连接避雷器(SPD)。
- 避雷器(SPD)的接地和本产品的接地应分开进行。
- 对所有输入回路选择合适的浪涌保护设备(SPD)并使用。
- 在确认关闭电源后再进行电源电缆的安装和拆卸。
- 再次接通电源时,请在PWR-LED熄灭后,5秒以后再开机。
- 根据连接的显示器电源接通时间,或有画面不能正常显示的情况。应在使用本产品之前接通显示器的电源。
- 有的USB设备,在电脑的电源关闭时,会发生电流倒灌到电脑的情况。如果连接了这样的USB设备,5V电源 不能完全关闭,本产品可能无法启动。此时,应先拆除USB设备,接通电源后再进行连接。
 (将USB设备作为启动设备使用时,请在系统检测USB设备前进行连接)
- PWD-90AW24-01 (CONTEC制)供电时,瞬间低容许时间为20ms以下。

2. 外形尺寸

3. POST代码

POST	说明
< Security (SEC) p	hase >
1h	接通由源、检测复位类型(硬件/软件)
2h	微代码读取前AP的初始化
3h	微代码读取前的北桥初始化
4h	微代码读取前的海桥初始化
5h	微码读取前的OFM的初始化
6h	微代码读取
7h	微代码读取后AP的初始化
8h	微代码读取后的北桥初始化
9h	微码读取后的南桥初始化
Ah	微码读取后的OEM的初始化
Bh	缓存初始化
<pre-efi initiali<="" pre=""></pre-efi>	zation (PEI) phase >
10h	PEI 核心的开始
11h	开始预存储器CPU初始化
12h - 14h	预存储器CPU初始化(CPU模块专用)
15h	开始预存储器北桥初始化
16h - 18h	预存储器北桥初始化(北桥模块专用)
19h	开始预存储器南桥初始化
1Ah - 1Ch	预存储器南桥初始化(南桥模块专用)
1Dh	等待堆栈型模块的初始化完成(最多4秒)
1Eh - 2Ah	OEM预存初始化代码
2Bh	内存初始化:Serial Presence Detect(SPD)数据读取
2Ch	存储器初始化:存储器检测
2Dh	存储器初始化:存储器定时信息的编程
2Eh	内存初始化:配置内存
2Fh	内存初始化:其他
30h	ASL用预约(参照ACPI/ASL Checkpoints)
31h	已安装存储器
32h	开始CPU后存储器初始化
33h	CPU后存储器初始化: 高速缓存初始化
34h	CPU后存储器初始化: Application Processor (s)(AP)的初始化
35h	CPU后存储器初始化: 自引导处理器 (BSP) 的选择
37h	CPU后存储器初始化: System Management Mode(SMM)的初始化
38h	开始后内存北桥初始化
39h - 3Ah	后存储器北桥初始化(北桥模块专用)
3Bh	开始后内存南桥初始化
3Ch - 3Eh	后存储器南桥初始化(南桥模块专用)
3Fh - 4Eh	OEM后存储器初始化代码
4Fh	DXE IPL的启动
< Driver Execution	Environment (DXE) phase >
60h	DXE核心的启动
61h	NVRAM初始化
62h	安装南桥运行时间服务
63h	
64h - 67h	CPU DXE安装的开始(CPU模块专用)
68h	PUI主机价的安装
69h	开始北桥103比的初始化
bAh	フTタテュLウヤレスヒ SMM的物始化
6Bh - 6Fh	北附UAE的彻垢化(北附楔状专用)
/ Uh	
71h	开始初始化图称UXE SMM
72h	附

73b 一77b 尚所知此的刘龄化(你杨晓典专用) 78b AC9T 楊英浩 的政化 78b AC9T 楊英浩 的政化 78b CSM常 前龄化 78b OM UK 2000 (GB	POST (hex)	说明
78h $ACT (ik) k(h) mh(k)$ 78h CSM(h) mh(k) 7Ab 7Fk 7Ab 7Fk 90h Boot Device Selection (RS) frig 90h Boot Device Selection (RS) frig 92h For Cask print 92h For Cask print 92h For Cask print 93h PCI Cask print 94h Julicit Lask fright 95h PCI Cask print 95h PCI Cask print <	73h - 77h	南桥DXE的初始化(南桥模块专用)
7:86 CSM的物始化 7:4h 7.7h 7:4h 7.7h 7:4h 7.7h 9:6 CM DAD DATA DATA DATA DATA DATA DATA DATA	78h	ACPI模块的初始化
7.h. $76k \pm 60h$ DBG k For the VEC (20) 80h 68h 0FM DXE by fulct (20) 90h Hoot Device Selection (208) fb(Q 91h $30k$, Device Selection (208) fb(Q 92h $90k$ For CL 28 $kyh dk$ theol $28h$ of $28h$ 93h PCL 28 $kyh dk$ theol $28h$ of $28h$ 95h PCL 28 $kyh dk$ 97h $28h$ of $28h$ of $28h$ 98h $28h$ of $28h$ of $28h$ 98h $28h$ of $28h$ of $28h$ 98h Super Tool $28h$ of $28h$ 98h Super Tool $28h$ of $28h$ 98h Super Tool $28h$ of $28h$ 98h US self of $28h$ A1h IEE $63h$ A2h UE $63h$ A3h UE $64h$ A5h SCS 18h A5h SCS 18h	79h	CSM的初始化
80h - 89h OPI Distribute Selection (2015) %% 90h Boot Device Selection (2015) %% 92h If SQPCL5&\$ 0.0 (2015) %% 92h If SQPCL5&\$ 0.0 (2015) %% 93h PCI 0.2 0.2 0.4 0.0 (2015) %% 94h 9101 C1 0.2 0.4 0.0 (2015) %% 95h PCI 0.2 0.2 0.0 (2015) %% 97h Bod Feb 1.0 (2015) %% 98h PCI 0.2 0.0 (2015) %% 97h Bod Feb 1.0 (2015) %% 98h PCI 0.2 0.0 (2015) %% 99h Super 1.0 0.0 (2015) %% 99h Super 1.0 0.0 (2015) %% 99h USD (2015) %% 99h 90h 99h Super 1.0 0.0 (2016) %% 99h 90h 99h Super 1.0 0.0 (2016) %% A0h Ibraf 204 A1h 1brag 2 A2h 1braf 204 A1h 1brag 2 A2h 1braf 204 A3h SCI 1020 A3h SCI 1020 A3h SCI 1020 A3h SCI 1020 <	7Ah – 7Fh	为将来的AMI DXE代码预留
90h bot Device Selection(BDS)阶段 91h 現式器技術所始 92h 現式器技術所始 92h 形式器体技術所始 92h PtagerLa&被助始 93h PCLa&政術技術 95h PCLa&政術技術 95h PCLa&政術技術 96h PCLa&政術技術 97h 防御台輸山设备的边缘 98h た動台輸台域 99h USAQU 99h USAQU 99h USAQU 90h USAQU 40h UDECAU A0h ToticAU A1h IDUETE A2h UDECAU A3h USAJAU A4h SCS1が別 A5S.1 USAJAU A5D SCS1使星	80h - 8Fh	OEM DXE初始化代码
9 91h $groups definition of the set of the $	90h	Boot Device Selection(BDS)阶段
92h 开始PCI 总线晶晶技控制器的利助化 93h PCI 总线晶晶技控制器的利助化 94h 列出PCI 总线晶质空 95h PCI 总线的资源词求 96h PCI 总线的资源词求 97h 控制台输出设备的连接 98h PENDes输入设备的连接 99h Super 10的构成化 99h USF度效 90h DEF度度效 40h SCST 60h A3h DSCST 60h <td< th=""><th>91h</th><th>驱动器连接的开始</th></td<>	91h	驱动器连接的开始
93h PCL St&hefter/ave/Biological 94h $\overline{9}$ HCL Stath State 95h PCL Stath State 96h PCL Stath State 97h Real Point State 98h Real Point State 98h State Point State 98h State Point State 99h State Point Point Point State 99h State Point	92h	开始PCI总线初始化
94h919195hPCI $\& \& \& h \otimes g \otimes h \in \mathbb{N}$ 95hPCI $\& \& \& h \otimes g \otimes g \otimes h \in \mathbb{N}$ 97h $E \otimes h \otimes g \otimes g \otimes h \otimes g \otimes g \otimes h \otimes g \otimes g \otimes g$	93h	PCI总线热插拔控制器的初始化
95hPCL6200 6 % m k97hRel 46 \pm 0 % k97hRel 46 \pm 0 % k98hRel 46 \pm 0 % k99hSuper 100 30 % k99hSuper 100 30 % k90hUSB 7 %90hUSB	94h	列出PCI总线编号
9thPCL&2&Bits Pft9thExtended Field9thExtended Field9thExtended Field9thUSB Extended Field40thTrial Extended Field41thUtended Field42thUtended Field43thUtended Field44thSCS Upft45thSCS Upft46thSCS Upft47thSCS Upft48thExtended Field48thSCS Upft48thSCS Upft<	95h	PCI总线的资源请求
97h 抱害的备让没备的连接 98h 把制台输入设备的连接 99h Super To的初始化 98h 开始USB初始化 99h USB复位 90h USB复位 90h USB拉 90h USB拉 90h USB拉 90h PSP 为将家 coMut 代码顶锁管 A0h 开始L的增加 A1h IDE 電力 A2h IDE 检测 A3h IDE 有力加 A3h IDE 有力加 A3h SCS IQ 化 A5h SCS IQ 化 A5h SCS IQ 化 A6h SCS IT M A7h SCS IQ 化 A8h 常商确认的设置 A8h 常商确认的设置 A8h 常商确认的设置 A8h 安富 AUAUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	96h	PCI总线的资源分配
98h控制台输入设备的连接99hSuper 10的初始化99hUSB2090hUSB4290hUSB4290hUSB4290hUSB4290hUSB4290hTydtpantigerA0hFydtpantigerA1hIDE 2A2hIDE 420A3hIDE 420A5hSCS12SCS12ZA6hSCS12SCS142ZA6hSCS142A7hSCS142A6hSCS142A7hSCS142A6hSCS142A7hSCS142A6hSCS142A7hSCS142A6hSCS142A7hSCS142A6hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSCS142A7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTMA7hSASLFTM	97h	控制台输出设备的连接
99hSuper 106939649Ah F &itSleb/bé/49ChUSb 2g (v.9ChUSb 2g (v.9ChUSb 4g (v.9ChUSb 4g (v.9Ch F & Apk 4g (v. M. Casima from from from from from from from from	98h	控制台输入设备的连接
9Ah $T \pm \pi \pi + \pi +$	99h	Super IO的初始化
9BhUSB $\bar{g}(c)$ 9ChUSB $\bar{f}(\Delta)$ 9DhUSB $\bar{f}(\Delta)$ 9DhUSB $\bar{f}(\Delta)$ 9DhTybe $\bar{f}(\Delta)$ AOh $\mathcal{T}(\Delta)$ UD $\bar{f}(\Delta)$ AOh $\mathcal{T}(\Delta)$ UD $\bar{f}(\Delta)$ AOh $\mathcal{T}(\Delta)$ A2hIDE $\bar{f}(\Delta)$ A2hIDE $\bar{f}(\Delta)$ A3hIDE $\bar{f}(\Delta)$ A5hSCS I $\bar{f}(\Delta)$ A5hSCS I $\bar{f}(\Delta)$ A6hSCS I $\bar{f}(\Delta)$ A7hSCS I $\bar{f}(\Delta)$ A8h $\bar{s}(A)$ A9h $\bar{f}(B)$ $\bar{f}(B)$ $\bar{f}(B)$ A8h $\bar{f}(B)$ A8h $\bar{f}(B)$ A9h $\bar{f}(B)$ A9h $\bar{f}(B)$ A9h $\bar{f}(B)$ A9h $\bar{f}(B)$ A9h $\bar{f}(B)$ A1h $\bar{f}(B)$ A1h $\bar{f}(B)$ A1h $\bar{f}(B)$ A1h $\bar{f}(B)$ A1h $\bar{f}(B)$ A1h $\bar{f}(B)$ A2h $\bar{f}(B)$ <td< th=""><th>9Ah</th><th>开始USB初始化</th></td<>	9Ah	开始USB初始化
9ChUSB dag 9DhUSB dag 9Dh9Fh9Fh9Fk dag AOhTfd1DE dag AOhTfd1DE dag A2hIDE dag A3hIDE dag A3hIDE dag A4hSCSI dgh A5hSCSI dgh A7hSCSI dgh A7hSCSI dgh A7hSCSI dgh A8hBCSI dgh A7hSCSI dgh A8hSGH $dggh$ A7hSCSI dgh A8hSGH dgh A7hSCSI dgh A8hBGh $dggh$ A9h ∂ggf B7hSCSI dgh A8hSGH dgh B7hSCSI dgh A8hSGH dgh B7hSCSI dgh A8hSGH dgh B7hSCSI dgh B7h </th <th>9Bh</th> <th>USB复位</th>	9Bh	USB复位
90hUSB $fx \dot{\chi}$ 98h98h98h98h98h98h98h98h98h98h98h98h10898h10898h88h98h88h98h88h98h98h98h98h99h99h99h99h99h99h99h99h99h99h99h99h90h99h <t< th=""><th>9Ch</th><td>USB检测</td></t<>	9Ch	USB检测
9Ph - 9Fh $> jk k m k m k m k m k m k m k m k m k m $	9Dh	USB有效
A0h $\# d_{1}Dc \bar{d} m d\bar{d} k$ A1h $1Dc \bar{d} m d\bar{d} k$ A2h $1Dc \bar{d} m d\bar{d} k$ A3h $1Dc \bar{d} m d\bar{d} k$ A4hSCS1 $\bar{d} m d\bar{d} k$ A5hSCS1 $\bar{d} d\bar{d} k$ A7hSCS1 $\bar{d} d\bar{d} k$ A7hSCS1 $\bar{d} d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{w} e g m h d\bar{d} g m d\bar{d} k$ A8h $\bar{d} h d\bar{d} g m d\bar{d} k$ A9h $\bar{d} g m d\bar{d} g m d\bar{d} k$ A8h $\bar{d} h d\bar{d} g m d\bar{d} g m d\bar{d} k$ A8h $\bar{d} h d\bar{d} g m d\bar{d} g m d\bar{d} k$ A8h $\bar{d} h d\bar{d} g m d\bar{d} g$	9Eh – 9Fh	为将来的AMI代码而预留
A1hIDE $degingA2hIDE degingA3hIDE fayhkA4hSCS1 dyhkA4hSCS1 dyhkA5hSCS1 gdeA6hSCS1 dyhkA7hSCS1 fayhkA8hgeogeneticsA9hyggr xyhkA9hyggr xyhkA8hgeogeneticsA9hyggr xyhkA9hyggr xyhkA1hyASLH ggr (sgr x) (syhk) (syhk$	A0h	开始IDE初始化
A2hIDE $fbyll$ $A3h$ IDE $fbyll$ $A4h$ SCS1 $byll$ $A5h$ SCS1 fg $A6h$ SCS1 fg $A6h$ SCS1 fg $A7h$ SCS1 fg $A7h$ SCS1 fg $A8h$ $eefficient (A) = 100000000000000000000000000000000000$	A1h	IDE重置
A3hIDE \bar{q} \bar{y} /kA4hSCS1 \bar{v} \bar{y} A5hSCS1 \bar{g} A6hSCS1 \bar{k} \bar{k} A7hSCS1 \bar{q} \bar{y} A8h \bar{s} \bar{m} \bar{m} \bar{k} A8h \bar{s} \bar{m} \bar{m} \bar{k} A9h \bar{k} \bar{k} \bar{k} A8h \bar{s} \bar{m} \bar{m} A8h \bar{s} \bar{m} A9h \bar{k} \bar{k} A8h \bar{k} \bar{m} A8h \bar{k} \bar{k} A8h \bar{k} \bar{k} \bar{k} A8h \bar{k} \bar{k} \bar{k} A8h \bar{k} <td< th=""><th>A2h</th><td>IDE检测</td></td<>	A2h	IDE检测
A4hSCS1初期化开始A5hSCS1 ξ (h)A6hSCS1 ξ (h)A7hSCS1 ξ (h)A8h密码确认的设置A9h设置开始AAh为ASL用預留(\otimes ERACP1/ASL Checkpoints)ABh等待设置输入ACh为ASL用預留(\otimes ERACP1/ASL Checkpoints)ADh引导准备事件AEhLegacy1号事件ABh经结束B0h开始设置虚视地址映射的运行时B1h结束设置虚视地址映射的运行时B2h代药选项间的的均均化B3h系统重置B4hUSB热捕拔B5hPCL总线热捕拔B6hNVRAM的清理B7h状态重置(NVRAM设定的重置)B8h多统进入51体眠状态01h系统进入54体眠状态05h系统进入54休眠状态04h系统进入54休眠状态05h系统社、55休眠状态06hMK071/ASL Checkpoints071/ASL Checkpoints071/ASL Checkpoints071/ASL Checkpoints071/ASL Checkpoints071/ASL Checkpoints072hAS统进入54休眠状态075hAS%进入54休眠状态075hAS%进入54休眠状态075hAS%进入54休眠状态075hAS%±AS4标眠状态075hAS%±AS4K载统075hAS%±AS4K载统075hAS%±AS4K载统075hAS%±AS4K载统	A3h	IDE有効化
A5hSCSI $\overline{g}c$ A6hSCSI \overline{h} A7hSCSI \overline{h} A8h \overline{s} eBmAtM bg \overline{g} A9h \overline{g} \overline{g} \overline{g} A8h \overline{s} eBmAtM bg \overline{g} A9h \overline{g} \overline{g} \overline{g} AAh \overline{g} ACh \overline{g} <t< th=""><th>A4h</th><th>SCSI初期化开始</th></t<>	A4h	SCSI初期化开始
A6hSCS1检出A7hSCS1有效A8h密码确认的设置A9h设置开始AAh为ASL用预留($\&$ ERACP I/ASL Checkpoints)ABh等待设置输入ACh \supset JASL用预留($\&$ ERACP I/ASL Checkpoints)ADh引导准备事件ACh \supset JASL用预留($\&$ ERACP I/ASL Checkpoints)ADh引导准备事件AFhLegacy 引导非件AFh启动服务结束B0h开始设置虚视地址映射的运行时B1h结束设置虚视地址映射的运行时B2h传统选项ROM的初始化B3h系统重置B4hUSB热插拔B5hPCL总线热插拔B6hNVRAM的清理B7h状态重置(NVRAM设定的重置)B8h - BFh \supset 为将来的AUI代码预留C0h - CFhOEM BDS初始化代码ACPI/ASL Checkpoints01h系统进入S1体眠状态02h系统进入S2体眠状态03h系统进入S2体眠状态04h系统进入S2体眠状态10h从S1体眠状态恢复系统20h从S2体眠状态恢复系统	A5h	SCSI复位
A7hSCS1 \bar{q} %A8h密码确认的设置A9h χ χ χ AAh γ ASL用预留(% g AAh γ ASL用预留(% g ACh γ ASL用预留(g ACh γ ASL用预留(g ACh γ ASL用预留(g ACh γ ASLBCh γ ACALBCh </th <th>A6h</th> <th>SCSI检出</th>	A6h	SCSI检出
A8h $\begin{aligned}{l l l l l l l l l l l l l l l l l l l $	A7h	SCSI有効
A9h 设置开始 AAh 为ASL用预留(参照ACP1/ASL Checkpoints) ABh 等待设置输入 ACh 为ASL用预留(参照ACP1/ASL Checkpoints) ADh 引导准备事件 AEh Legacy引导事件 AFh 启动服务结束 BOh 开始设置虚拟地址映射的运行时 B1h 结束设置虚拟地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热捕拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AII代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S1休眠状态 03h 系统进入S1体眠状态 03h<	A8h	密码确认的设置
AAh 为ASL用预留(参照ACPI/ASL Checkpoints) ABh 等待设置输入 ACh 为ASL用预留(参照ACPI/ASL Checkpoints) ADh 引导准备事件 AEh Legacy引导事件 AFh 启动服务结束 B0h 开始设置虚拟地址映射的运行时 B1h 结束设置虚拟地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI 运线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h BFh B7h 状态重置(NVRAM设定的重置) B8h NVRAM的消理 B7h 状态重置(NVRAM设定的重置) B8h BFh D7h 状态重置(NVRAM设定的重置) B8h SAF O1h 系统进入S1体眠状态 O2h S统进入S1体眠状态 O2h 系统进入S34k眠状态 O3h 系统进入S34k眠状态 O3h 系统进入S4体眠状态 O5h 系统进入S4标眠状态 O5h 系统进入S4标眠状态 O5h 系统进入S4标眠状态 O5h	A9h	设置开始
ABh 等待设置输入 ACh 为ASL用预留(参照ACP1/ASL Checkpoints) ADh 引导准备事件 AEh Legacy引导事件 AFh 启动服务结束 B0h 开始设置虚视地址映射的运行时 B1h 结束设置虚视地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的MI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 02h 系统进入S1体眠状态 03h 系统进入S3体眠状态 03h 系统进入S3体眠状态 03h 系统进入S3体眠状态 03h 系统进入S4体眠状态 05h 系统进入S5体眠状态 05h	AAh	为ASL用预留(参照ACPI/ASL Checkpoints)
ACh 为ASL用预留(参照ACP1/ASL Checkpoints) ADh 引导准备事件 AEh Legacy引导事件 AFh 启动服务结束 BOh 开始设置虚视地址映射的运行时 B1h 结束设置虚视地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh 0EM BDS初始化代码 ACPI/ASL Checkpoints 01h 02h 系统进入S1休眠状态 03h 系统进入S3体眠状态 04h 系统进入S3体眠状态 05h 系统进入S3体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体眼状态 05h 系统进入S5体眼表态	ABh	等待设置输入
ADh 引导准备事件 AEh Legacy引导事件 AFh 启动服务结束 BOh 开始设置虚规地址映射的运行时 B1h 结束设置虚规地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 01h 系统进入S1体眠状态 02h 系统进入S3体眠状态 03h 系统进入S5体眠状态 04h 系统进入S5体眠状态 05h 系统进入S5体眠状态 04h 系统进入S4体眠状态 05h 系统进入S5体眠状态 04h 系统进入S5体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体联表 05h 系统进入S5体联表 05h 系统进入S5体联表 05h 系统进入S5体联表 05h 系统进入S5体联表	ACh	为ASL用预留(参照ACPI/ASL Checkpoints)
AEh Legacy引导事件 AFh 启动服务结束 B0h 开始设置虚拟地址映射的运行时 B1h 结束设置虚拟地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AHI代码预留 C0h - CFh 0EM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1体眠状态 02h 03h 系统进入S3体眠状态 03h 系统进入S3体眠状态 04h 系统进入S5体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体眠状态 05h 系统进入S4体眠状态 05h 系统进入S4体眠状态 05h 系统进入S5体眠状态 05h 系统进入S5体	ADh	引导准备事件
AFh 启动服务结束 B0h 开始设置虚拟地址映射的运行时 B1h 结束设置虚拟地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAN设定的重置) B8h BFh D7h 状态重置(NVRAN设定的重置) B8h BFh 为将来的AMI代码预留 COh CFh OE MDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1体眠状态 02h 系统进入S3体眠状态 03h 系统进入S3体眠状态 05h 系统进入S5体眠状态 06h 从S2体眠状态恢复系统 <th>AEh</th> <td>Legacy引导事件</td>	AEh	Legacy引导事件
B0h 开始设置虚视地址映射的运行时 B1h 结束设置虚视地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 03h 贝3h 系统进入S3休眠状态 04h 系统进入S5休眠状态 05h 系统进入S5休眠状态恢复系统 20h 从S2休眠状态恢复系统	AFh	
B1h 结束设置虚视地址映射的运行时 B2h 传统选项ROM的初始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 02h 系统进入S1休眠状态 03h 系统进入S3休眠状态 04h 系统进入S5休眠状态 05h 系统进入S5休眠状态	BOh	计始设直虚视地址映射的运行时 (小声) ····································
B2h 传统选项ROMBY的始化 B3h 系统重置 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 03h 系统进入S3休眠状态 04h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	Blh	结束设置虚拟地址映射的运行时
B3h 系统重直 B4h USB热插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 03h 系统进入S3休眠状态 04h 系统进入S5休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	B2h	传统选项KOM的初始化
B4h USB然插拔 B5h PCI总线热插拔 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 03h 系统进入S3休眠状态 04h 系统进入S3休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	B3h	<u> </u>
B5n PCI总线然油板 B6h NVRAM的清理 B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh 0EM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 03h 系统进入S3休眠状态 04h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	B4h	
Bon NVRAmb//// # B7h 状态重置(NVRAM设定的重置) B8h - BFh 为将来的AMI代码预留 C0h - CFh 0EM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h ③3h 系统进入S3休眠状态 04h 系统进入S3休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	Bon	
B7/n 状态単直(WRAM技定的単直) B8h - BFh 为将来的AMI代码预留 C0h - CFh OEM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 系统进入S3休眠状态 04h 系统进入S4休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	Bon	NVKAM的得理
B8h - Brn 內将来的AMI代码預備 C0h - CFh 0EM BDS初始化代码 ACPI/ASL Checkpoints 01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 系统进入S3休眠状态 04h 系统进入S4休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	B/h	状态里直(NVKAM攻疋的里直)
Conf = Crit OEM bD5MgaR44(4) ACPI/ASL Checkpoints O1h 系统进入S1休眠状态 02h 系统进入S2休眠状态 O3h 系统进入S3休眠状态 03h 系统进入S3休眠状态 O4h 系统进入S3休眠状态 05h 系统进入S5休眠状态 O5h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 O5h 从S2休眠状态恢复系统	DOII - DFII	○FW PDC和始化得到
01h 系统进入S1休眠状态 02h 系统进入S2休眠状态 03h 系统进入S3休眠状态 04h 系统进入S4休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	ACDT /ACL Chaplers in	UEM DUSTUSATION (#)
01n 原先近入31体配状态 02h 系统进入S2体眠状态 03h 系统进入S3体眠状态 04h 系统进入S4体眠状态 05h 系统进入S5体眠状态 10h 从S1体眠状态恢复系统 20h 从S2体眠状态恢复系统		ILS 系统进λς1体呢状态
02h 原先进入S2环眠状态 03h 系统进入S3休眠状态 04h 系统进入S4休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	0111	示抗近八ST怀眠状态 系统进入S9体眼状素
04h 系统进入S4休眠状态 05h 系统进入S5休眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	02ll	系统进入S2体吸状态 系统进入S3体限状态
05h 系统进入S5体眠状态 10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	0.4h	
10h 从S1休眠状态恢复系统 20h 从S2休眠状态恢复系统	05h	バルルハッキャール(ハル) 系统进入S5休眠状态
20h 从S2休眠状态恢复系统	10h	
	20h	从S2休眠状态恢复系统
30b 从 S3休眠状态恢复系统	2011 201	从\$3休眠状态恢复系统
40h 从S4休眠状态恢复系统	40h	从S4休眠状态恢复系统

CPS-BXC200 参考手册

POST (hex)	说明
ACh	系统进入ACPI模式。中断控制器为PIC模式
AAh	系统进入ACPI模式。中断控制器为PIC模式

4. SERIAL的I/0地址和寄存器功能

◆ I/0地址

下图中的I/O地址用于串口A。

I/0地址	DLAB	Read/Write	寄存器	
03F8H	0	W	发送保持寄存器	THR
	0	R	接收缓冲寄存器	RBR
	1	W	分频数锁存寄存器(LSB)	DLL
03F9H	1	W	分频数锁存寄存器(MSB)	DLM
	0	W	中断使能寄存器	IER
03FAH	Х	R	中断识别寄存器	IIR
03FBH	Х	W	线路控制寄存器	LCR
03FCH	Х	W	调制解调器控制寄存器	MCR
03FDH	Х	R	线路状态寄存器	LSR
03FEH	Х	R	调制解调器状态寄存器	MSR
03FFH	Х	R/W	暂存寄存器	SCR

※DLAB (Divisor Latch Access Bit): 线控制寄存器bit 7的值

▶ 各寄存器的功能

I/0地址	内容		
03F8H	THR : Transmitter Holding Register [DLAB=0]		
	D7 D6 D5 D4 D3 D2 D1 D0		
	bit7 < bit0		
	发送数据写入专用寄存器		
03F8H	RBR : Reciever Buffer Register [DLAB=0]		
	D7 D6 D5 D4 D3 D2 D1 D0		
	bit7 MSB < bit0 LSB		
	接收数据读入专用寄存器		
03F8H	DLL : Divisor Latch (LSB) [DLAB=1]		
	D7 D6 D5 D4 D3 D2 D1 D0		
	bit7 MSB < bit0 LSB		
	波特率设定寄存器(LSB)		
03F9H	DLH : Divisor Latch (MSB) [DLAB=1]		
	D7 D6 D5 D4 D3 D2 D1 D0		
	bit7 MSB < bit0 LSB		
	波特率设定寄存器(MSB)		

波特率的设置

通过对时钟输入进行分频,以软件设置波特率。作为硬件,最高可设定为115200bps。实际可使用的波特率因使用环境(电缆、软件等)而异。下表所示为代表性的波特率和分频数锁存寄存器(LSB、MSB)中写入值的对应表。

况留冲性 变	SERIAL 时钟输入(1.8432MHz)		
<u> </u>	设置分频寄存器的值 (Decimal)	设置误差(%)	
50	2304		
75	1536		
110	1047	0.026	
134.5	857	0.058	
150	768		
300	384		
600	192		
1200	96		
1800	64		
2000	58	0.69	
2400	48		
3600	32		
4800	24		
7200	16		
9600	12		
14400	8		
19200	6		
28800	4		
38400	3		
57600	2		
76800			
115200	1		
153600			
230400			

例)当波特率设置为9600bps时,在分频数锁存寄存器(MSB)中写入00,在分频数锁存寄存器(LSB)中写入12 (十进制)。

5. 电池的废弃

1. 电池的规格

本产品使用的电池如下:

项目	内容
品种	锂电池
型号	BR-1/2A
厂家	Panasonic
标称电压	3V
标称容量	1000mAh
锂含量	1g以下

2. 电池拆卸方法

废弃本产品时,请按照以下步骤拆卸电池。

1 取下外壳上的13根螺丝,拆下主机盖。

2 拆下基板的固定螺钉及固定电池的外盖。用钳子切断固定电缆的捆扎带。

切断固定电缆的捆扎带

3 拆卸电池。

废弃取出的电池时,应按照当地政府的要求妥善处理。

6.M.2的寿命

1. 关于改写寿命

产品中搭载的M.2存储卡(pSLC、MLC、TLC)在使用特性上,有重写次数的限制。 关于改写寿命,分别说明如下。

M. 2卡(pSLC)

改写寿命,可通过以下公式算出参考值。

重写寿命(次) = ((存储卡容量(KB)/管理页面容量(KB)×NAND型闪存寿命(次))/(一次重写管理页数) 管理页面容量(KB): 16K×8=128K 存储卡容量(KB): 62,9145560(扇区)÷2=31457280 *1

NAND型闪存寿命(次): 20000次

例)对于一个4MB的文件,每10秒钟重写一次的场合:
重写寿命 = ((31,457,280 / 128) × 20,000) /32 = 153,600,000 (次)
寿命 = 153,600,000 / ((60 / 10) × 60 × 24 × 365) ≒ 48.7 (年)

*1 这是32GB(pSLC)的场合。64GB(pSLC)的场合,存储卡容量值要翻倍(62914560)计算。

M. 2卡(MLC、32GB)

- 改写寿命,可通过以下公式算出参考值。 重写寿命(次) = ((存储卡容量(KB) × NAND型闪存寿命(次))/写入数据容量(KB) 存储卡容量(KB) = 32,017,047 NAND型闪存寿命(次) 3,000次
- 例)对于一个4MB的文件,每10秒钟重写一次的场合: 重写寿命 = (32,017,047 × 3,000) / 4,096 = 23,449,986 (次) 寿命 = 23,449,986 / ((60 / 10) × 60 × 24 × 365) ≒ 7.4 (年)

M. 2卡(MLC、64GB)

改写寿命,可通过以下公式算出参考值。

改写寿命(年) = 总改写寿命(次) / (年消耗区块数 / 总区块数)

例)对于一个4MB的文件,每10秒钟重写一次的场合:

年消耗区块数 = 1 × ((60 / 10) × 60 × 24 × 365)) = 3,153,600 (区块)

寿命 = 3,000 / (3,153,600 / 16,000) ≒ 15.2 (年)

M. 2卡(TLC、128GB)

改写寿命,可通过以下公式算出参考值。

改写寿命(年) = 总改写寿命(次) / (年消耗区块数 / 总区块数)

例)对于一个4MB的文件,每10秒钟重写一次的场合:

年消耗区块数 = (4 × (60 / 10) × 60 × 24 × 365) / 18 = 700,800 (区块) 寿命 = 3,000 / (700,800 / 7,200) ≒ 30.8 (年)

这只是参考数值,实际的寿命可用S. M. A. R. T确认。 如果写入的数据小于管理页面容量128K,则数值会小于计算值。

2. 关于S. M. A. R. T.

可以下载《SSD Life Monitor》软件来获取S.M.A.R.T信息。 ※有关《SSD Life Monitor》的详情,请咨询本公司技术支持中心

说明可与本产品组合使用的各个选配件。

1. 选配件

本产品有如下选配件。

可根据需求购买。

产品名称	型号	内容
DIN导轨嵌入式电源	CPS-PWD-90AW24-01	嵌入式电源 90W (输入: 100~240VAC、输出: 24VDC 3.8 A)
CFast卡(SLC)	CFS-4GB-A	CFast卡4GB
	CFS-8GB-A	CFast卡8GB
	CFS-16GB-A	CFast卡16GB
CFast卡(MLC)	CFS-32GBM-A	CFast卡32GB
	CFS-128GBM2-A	CFast卡128GB
CFast卡(Q-MLC)	CFS-16GBQ-A	CFast卡16GB
	CFS-32GBQ-B	CFast卡32GB(高耐环境类型)
堆栈型I0扩展模块	CPS-DIO-0808L	数字输入输出功能 (无内置电源)
	CPS-DIO-0808BL	数字输入输出功能(带内置电源)
	CPS-DIO-0808RL	数字输入输出功能(拉电流型)
	CPS-DI-16L	数字输入功能 (灌电流型)
	CPS-DI-16RL	数字输入功能 (拉电流型)
	CPS-DO-16L	数字输出功能(灌电流型)
	CPS-DO-16RL	数字输出功能(拉电流型)
	CPS-RRY-4PCC	继电器输出功能
	CPS-AI-1608LI	模拟输入功能(电压输入8通道类型)
	CPS-AI-1608ALI	模拟输入功能(电流输入8通道类型)
	CPS-A0-1604LI	模拟输出功能(电流输出4通道类型)
	CPS-A0-1604VLI	模拟输出功能(电压输出4通道类型)
	CPS-CNT-32021	计数器输入功能
	CPS-COM-1PC	RS-232C扩展(搭载1个端口)
	CPS-COM-2PC	RS-232C扩展(搭载2个端口)
	CPS-COM-1PD	RS-4422A/485扩展(搭载1个端口)
	CPS-COM-2PD	RS-4422A/485扩展(搭载2个端口)

⚠注意

使用本公司选配件以外的产品时,可能无法正常运行,或者功能可能会受到限制。

有关选配件的最新信息可参阅我司的网站。

主页

https://www.contec.com/

修订履历

修订日期	修订内容
2021年3月	初版
2022年10月	与减少捆绑物有关的变化
2024年2月	产品阵容中增加了配备 M.2 卡 (TLC, 128GB) 的类型。

- 关于本书的内容,虽然已经做了仔细的确认,如有发现不妥之处或内容遗漏等情况,请联系经销处或技术 支持中心。
- CONPROSYS为株式会社康泰克的注册商标。其他书中使用的公司名和产品名称一般是各公司的商标或注册商标。

株式会社康泰克 〒555-0025 大阪市西淀川区姬里3-9-31

https://www.contec.com/ 本产品及本书籍受到著作权法的保护,禁止擅自复印、复制、转载、改变。 CPS-BXC200 参考手册 NA08112 (LYZL613) 02092024_rev3 [03312021]

2024年2月颁布