100KSPS 16-bit Analog I/O Board for PCI Express AIO-163202G-PE

- * The photograph is a AIO-163202UG-PE.
- * Specifications, color and design of the products are subject to change without notice.

*The contents in this document are subject to change without notice. *Visit the CONTEC website to check the latest details in the document. *The information in the data sheets is as of April, 2024.

Features

High-performance, multifunction single DAQ device with analog and digital input/output and counter functions

In addition to analog input, this high-performance multi-function device is equipped with 2 analog output channels, 16 digital inputs and outputs, and 2 counter channels (32-bit), enabling measurement control in a compact, reasonably priced package for systems requiring a variety of signal inputs and outputs.

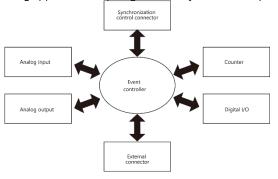
	Analog Input			Analog Output		
Model	Number of channels	Resolution	Conversion speed	Number of channels	Resolution	Conversion speed
AIO-163202UG-PE	Single-	16bit	1µsec/ch		16bit	10usec
AIO-163202G-PE	Ended: 32ch	TODIL	10µsec/ch	2ch	TODIL	TOpsec
AIO-123202UG-PE	(Differential:	12bit	1µsec/ch	201	12bit	6µsec
AIO-123202G-PE	16ch)		10µsec/ch		12DIL	oµsec

Adopts and improves on the functions of the Analog E Series with compatibility for the Analog F Series

The Analog G Series was designed as a successor to the best-selling Analog E Series, long recognized as a mainstay of PC-based highperformance analog measurement devices. Using the conversion cable (DT-G2E-16/DT-G2E-32) also makes it possible to use the same connector pin assignments as the Analog E Series, allowing for the use of Analog E Series accessories and user design assets without any modifications.

The Analog G Series also shares the same connector pin assignments as the Analog F Series for use as upward-compatible devices. This also makes it possible to use Analog F Series accessories and user

design assets without any modifications.


Bus master transfer function for high-speed, continuous sampling The bus master transfer function, which allows data to be directly transferred to the PC memory, enables continuous sampling for long periods without affecting the device's maximum conversion speed. When analog input data is transferred using the bus master transfer function, simultaneous transferring of various data is also possible, including analog output, digital input, digital output, and counter data synchronized with analog input clock signals.

This makes the product ideal for component inspection equipment and measurement testing benches that require high-speed data acquisition over long periods.

Built-in event controller for advanced synchronization control The built-in event controller enables integrated management of the triggers and statuses of each signal input and output, enabling The Analog G Series is a PCI Express-compliant data acquisition (DAQ) device with high-speed, high-precision, multi-channel analog input functionality. In addition to analog input, this multi-function device is equipped with analog output, digital input/output, and a counter, enabling measurement control in a compact, reasonably priced package for systems requiring a variety of signal inputs and outputs. The bus master transfer function also enables continuous sampling for long periods without affecting the device's maximum conversion speed. This makes the product ideal for component inspection equipment and measurement testing benches that require high-speed data collection over long periods.

In addition, thanks to the event controller's ability to perform hardwarelevel integrated management of the trigger, clock, and status of each signal input/output, synchronous signal input/output control—difficult to achieve at the software level—is possible. As a result, the product is ideal for factory automation and mixed-signal testing applications requiring low-latency, real-time responsiveness.

hardware-level synchronization control of signal inputs and outputs. As a result, the product is ideal for factory automation and mixed-signal testing applications requiring low-latency, real-time responsiveness.

Scenario 1: Analog input and output synchronized with an external dock signal. Scenario 2: Analog input performed whenever the counter value reaches the set value.

Synchronized operation of up to 16 devices (connection via synchronization connector)

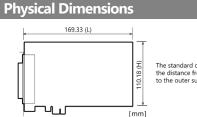
Synchronized operation of up to 16 devices is possible with no need for external wiring or clock synchronization.

Simply connect the devices via the synchronization connector and a dedicated cable to enable synchronized operation using the event controller. Synchronized operation is also possible with other Contec devices featuring a synchronization connector (such as the DIO-32DM3-PE and CNT-3208M-PE).

Wide selection of wiring accessories and expansion modules with various functions

Choose from a wide selection of expansion modules offering various functions such as buffer amplification (operational amplification), simultaneous sampling (sample/hold amplification), thermocouple input, gain amplification, and low-pass filtering. Various wiring accessories are also available, including BNC terminal blocks, screw terminal blocks, and noise-resistant cables.

Jumper-less, trim-less configuration (software configuration)


Software-based configuration of input range, output range, accuracy calibration, and digital filtering settings is possible while the product is installed on the computer.

- Analog output range settings: $\pm 10V$, $\pm 5V$, $\pm 2.5V$,
- 0 +10V, 0 +5V, 0 +2.5V
- Analog output range settings: ±10V, ±5V, ±2.5V, ±1.25V, 0 +10V, 0 - +5V, 0 - +2.5V
- Analog input/output calibration settings: Factory default or user preset
- Digital filtering setting (external trigger/clock, digital input, counter): 0 -

© CONTEC

Windows/Linux support device driver

Using the device driver API-TOOL makes it possible to create applications of Windows/Linux. In addition, a diagnostic program by which the operations of hardware can be checked is provided.

The standard outside dimension (L) is the distance from the end of the card to the outer surface of the slot cover.

Included Items

Product [AIO-163202G-PE] ...1 Synchronization Control Cable ...1 Please read the following ... 1

Specifications

Function specification

ltem	centeation	Description
Analog input	Isolated specification	Un-Isolated
	Input type	Single-Ended Input or Differential Input
	Number of input channels	32ch (Single-Ended Input) 16ch (Differential Input)
	Input range	Bipolar ±10V, ±5V, ±2.5V or Unipolar 0 - +10V, 0 - +5V, 0 - +2.5V
	Absolute max input voltage *1	±15V (Max.)
	Input impedance	1MΩ or more
	Resolution	16bit
	Non-Linearity error *2*3*4	Within ±5LSB
	Conversion speed	10µsec/ch (Max)
	Buffer memory	128M Word FIFO or 128M Word RING
	Conversion start trigger	Software, conversion data compare, external trigger, and event controller output.
	Conversion stop trigger	Data save complete, conversion data compare, external trigger, event controller output, and software.
	External start signal *5	LVTTL level (Rising or falling edge can be selected by software)
	External stop signal *5	LVTTL level (Rising or falling edge can be selected by software)
	External clock signal *5	LVTTL level (Rising or falling edge can be selected by software)
	External status output signal *6*7	2 LVTTL level, Sampling clock output, etc.
Analog output	Isolated specification	Un-Isolated
	Number of output channels *7	2ch
	Output range	Bipolar ±10V, ±5V, ±2.5V, ±1.25V or Unipolar 0 - +10V, 0 - +5V, 0 - +2.5V
	Output current ability	±5mA
	Output impedance	1Ω or less
	Resolution	16bit
	Non-Linearity error *1	Within ±3LSB
	Conversion speed	10µsec (Max.)
	Buffer memory	256k Word FIFO or 256k Word RING
	Conversion start trigger	Software, external trigger, and event controller output.
	Conversion stop trigger	Last sampling count, external trigger, event controller output, and software.
	External start signal *5*7	LVTTL level (Rising or falling edge can be selected by software)
	External stop signal *5*7	LVTTL level (Rising or falling edge can be selected by software)
	External clock signal *5*7	LVTTL level (Rising or falling edge can be selected by software)
	External status output signal *6*7	2 LVTTL level, Generating clock output, etc.

ltem		Description		
Digital I/O section	Number of I/O channels *7*8	16 (The number of inputs and outputs can be set to either 16 inputs, 8 inputs and 8 outputs, or 16 outputs using the software.)		
	Response time	200nsec (Max)		
	I/O model *5*6	Un-Isolated I/O (LVTTL level positive logic)		
Counter	Number of channels *7	2ch		
	Counting system	Up count		
	Max. count	FFFFFFFh (Binary data, 32bit)		
	Number of external inputs *5*7	2 LVTTL level (Gate/Up)/ch, Gate (High level), Up (Rising edge)		
	Number of external outputs *6*7	LVTTL level output/ch, Count match output (positive logic, pulse output)		
	Frequency response	10MHz (Max)		
Bus master	DMA channels	2ch		
section	Transfer bus width	64/32bit		
	Transfer data length	360MByte/s		
	FIFO	8k Word/ch		
	Scatter/Gather function	2G Byte/ch		
Synchronization bus section	Control output signal	Selection of output signal with the software when specifying a sync master product.		
	Control input signal	Selection of sync factor with the software when specifying sync slave products.		
	Max. product count for connection	16 products including the master product		
Common	Memory address	Occupies 2 locations 256MByte		
section	Connector	96-pin half pitch connector [M(male)type] PCR-96LMD [HONDA TSUSHIN KOGYO CO., LTD.] or equivalent		
	Current consumption *9	3.3V 2500mA (Max.), 12V 500mA (Max.)		
	Operating condition	0 - 50°C, 10 - 90%RH (No condensation)		
	Bus specification	PCI Express Base Specification Rev.2.0 x1		
	Dimension (mm)	169.33(L) × 110.18(H)		
	Weight	140g		

*1 Do not input voltages in excess of the maximum input voltage. Similarly, do not input voltage exceeding 1.5 times the range being used, even if less than the maximum input voltage. Inputting too high a voltage may cause a fault.

*2 The rated precision may not be achieved depending on the cable used.

*3 The non-linearity error means an error of approximately 0.1% occurs over the maximum range at 0°C and 50°C ambient temperature.

*4 When using a signal source with a built-in high-speed operational amp.

*5 Inputting a 5 V TTL signal is possible.

*6 Output to 5VTTL signal is possible. The signal will be output when H is 2.0 V or higher, and L is less than 0.8 V.
*7 The number of analog outputs, control signals, digital inputs/outputs, counters, etc. will be limited when using a conversion cable (DT-G2E-16 or DT-G2E-32). Refer to the instruction manual of the conversion cable for details.

*8 When JP1 is set to 2-3, the product will be fixed at 8 inputs and 8 outputs (with 1 output for Simultaneous Hold Output).

*9 When JP1 is set to 1-2, because there is no external +5 V supply, the 12 V consumption becomes zero.

Installation Environment Requirements

Item	Description		
Operating ambient temperature	0 - +50°C		
Operating ambient humidity	10 - 90%RH (No condensation)		
Floating dust particles	Not to be excessive		
Corrosive gases	None		
Standard	VCCI Class A, CE Marking (EMC Directive Class A, RoHS Directive), UKCA		

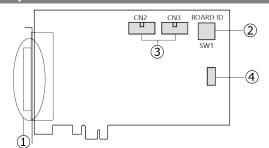
You can use CONTEC support software according to your purpose and development environment.

For more details on the supported OS, applicable languages, or to download the latest version of software, visit the CONTEC Web site.

Name	Contents	How to get
Windows version High- efficiency Analog I/O Driver API-AIO(WDM)	The API-AIO(WDM) is the Windows version driver software that provides products in the form of Win32 API functions (DLL). Various sample programs such as Visual Basic and Visual C++, etc and diagnostic program useful for checking operation is provided.	Download from the CONTEC website *1
Analog I/O Driver for Linux API-AIO(LNX)	This is the Linux version driver software provided in API function formats. The software includes various sample programs such as gcc (C, C++) and Python programs.	Download from the CONTEC website *1
Software Development Tool Kits (SDK) and Support Software	In addition to the device drivers, we offer many software programs for using CONTEC devices in an easier manner.	Download from the CONTEC website *2

*1 Download the files from the following URL

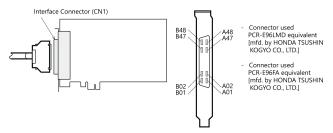
https://www.contec.com/download/


*2 For supported software, search the CONTEC website for this product and view the product page. https://www.contec.com/

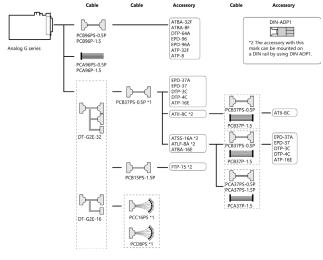
Optional Products

Product Name	Model type	Description
Buffer Amplifier Box for Analog Input	ATBA-32F *1*2	
Boards	ATBA-16E*3	
	ATBA-8F *1*2*4	
Screw Terminal	DTP-64A *1	
	DTP-4C	
Terminal Unit for Relay Terminal Banks	EPD-96 *1	
Screw Terminal	EPD-37A *3*5	M3 x 37P
	EPD-96A *1*5	M3 x 96
	EPD-37 *3	M3.5 x 37
General Purpose Terminal	DTP-3C	
M3 screw terminal board	FTP-15*6	
Termination Panel with BNC connectors	ATP-32F *1	
for Analog I/O Boards	ATP-8 *1*4*7	
	ATP-16E *3	
Simultaneous Sample & Hold Accessory for Analog Input	ATSS-16A *3*8	
Isolated Expansion Accessory for Analog Input	ATII-8C*3	
Low Pass Filter Accessory for Analog Input	ATLF-8A *3	
Connection Conversion Shield Cable	DT-G2E-16 *9	96p → 37p & 15p
	DT-G2E-32 *9	96p → 37p x 2 & 15P
Shielded Cable with One 96-pin	PCA96PS-0.5P	
Half-Pitch Connector	PCA96PS-1.5P	
Shielded Cable with Two 96-Pin	PCB96PS-0.5P	
Half-Pitch Connectors	PCB96PS-1.5P	
Shielded Cable with One 37-pin	PCA37PS-0.5P *10	0.5m
D-type Connector	PCA37PS-1.5P *10	1.5m
Shielded Cable with two 37-pin	PCB37PS-0.5P *10	0.5m
D-type Connectors	PCB37PS-1.5P *10	1.5m
Flat Cable with One 96-pin Half-Pitch Connector	PCA96P-1.5 *11	
Flat Cable with 96-pin Half-Pitch Connectors at Both Ends	PCB96P-1.5 *11	
Flat Cable with a 37Pin D-type Connector	PCA37P-1.5 *10*11	1.5m
Flat Cable with 37-Pin D-type Connectors on 2Ends	PCB37P-1.5 *10*11	1.5m
Coaxial Cable for Single-ended Inputs	PCC16PS-1.5	
	PCC16PS-3	
2 Wires Shielded Cable for Differential	PCD8PS-1.5 *10	
Inputs	PCD8PS-3 *11	
Shielded Cable with Connector on both sides for 15-pin D-Type Connector	PCB15PS-1.5P *10	

- *1 A PCB96PS -* optional cable is required separately. (0.5m is recommended.) *2
 - An external power supply is necessary (optional AC adaptor POA200-20-2 prepared.) A conversion cable (DT-G2E-16 or DT-G2E-32) and a PCB37PS-*P cable are required separately.
- *3 (0.5m is recommended.)
- *4 The analog input could have 8 channels to be used.
- *5 "Screw upright terminal panel" is used to prevent terminal screws from falling off.
- *6 A conversion cable (DT-G2E-16 or DT-G2E-32) and a PCB15PS-1.5P cable are required separately
- *7 The digital input can be used up to four points, the digital output up to four points and the counter I/O up to 1 channel.
- *8 An external power supply is necessary
- A conversion cable (DT-G2E-16 or DT-G2E-32) and a PCB15PS-1.5P cable are required *9 separately. The length of the conversion cable (DT-G2E-16 or DT-G2E-32) is short, therefore, in order to install the FTP-15 securely, we recommend the use of the PCB15PS-1.5P cable.
- *10 A conversion cable (DT-G2E-16 or DT-G2E-32) is required separately.
- *11 Flat cables are not compliant with CE EMC Directive. Use shielded cables to ensure compliance with these standards.
- Information about the option products, see the Contec's website.


Component Name

No.	lo. Name		Name
1	Interface Connector	3	Connector for Synchronization control
2	Board ID Setting Switch	4	E Series Setting Jumper (JP1)


Connecting an Interface Connector

To connect an external device to this product, plug the cable from the device into the interface connector (CN1) shown below.

Adding Optional Products

Functions can be expanded by adding various dedicated optional products.

*1 Two sets of cables are necessary to use the DT-G2E-32.

*2 The optional products with this mark can be mounted on a DIN rail by using [DIN-ADP1] accessary.

* Please refer to "Optional Products" for more information on the supported cable and accessories.

A48 Analog Output 00

A46 Analog Output 01

A44 Analog Input 00[+]

A43 Analog Input 00[-]

A42 Analog Input 01[+]

A41 Analog Input 01[-]

A40 Analog Ground (for Al)

A39 Analog Ground (for Al)

Analog Input 03[+]

A34 Analog Ground (for Al)

Analog Input 04[+]

Analog Ground (for AI)

A38 Analog Input 02[+]

A37 Analog Input 02[-]

A35 Analog Input 03[-]

A31 Analog Input 04[-]

A30 Analog Input 05[+]

A29 Analog Input 05[-]

A28 Analog Ground (for Al)

A27 Analog Ground (for AI)

A26 Analog Input 06[+]

A25 Analog Input 06[-]

A24 Analog Input 07[+]

A23 Analog Input 07[-]

A20 Digital Ground

A22 Analog Ground (for AI)

A21 Analog Ground (for Al)

+5V DC from PC *1

A18 Digital Input/Output 00 *3

A17 Digital Input/Output 01 *3

A16 Digital Input/Output 02 *3

A15 Digital Input/Output 03 *3

A14 Digital Input/Output 04 *3

A13 Digital Input/Output 05 *3

A12 Digital Input/Output 06 *3

A08 Digital Ground

Digital Input/Output 07 *3

Al Control Signal Output 00

Al Control Signal Output 01

A07 AI External Sampling Clock Input

Al External Start Trigger Input

Counter UP Clock Input 00

A02 Counter Gate Control Input 00

A01 Counter Output 00

A06 AI External Stop Trigger Input

A45

A36

A33

A32

A19

A11

A10

A09

A05

A04

A03 Reserved

[1] A48

A01

J [48]

A47 Analog Ground (for AO)

Analog Ground (for AO)

Signal Layout on the Interface Connector (CN	1)
Single-Ended Input	

					N.C.	
N.C. B48		A48	Analog Output 00		N.C.	
N.C. B47		A47	Analog Ground (for AO)		N.C.	
N.C. B46		A46	Analog Output 01		Analog Input 08[+]	
N.C. B45		A45	Analog Ground (for AO)		Analog Input 08[-]	
Analog Input 08 B44		A44	Analog Input 00			B42
Analog Input 24 B43		A43	Analog Input 16		Analog Input 09[-]	B41
Analog Input 09 B42		A42	Analog Input 01		Analog Ground (for Al)	B40
Analog Input 25 B41		A41	Analog Input 17		Analog Ground (for Al)	B39
Analog Ground (for AI) B40	-	A40	Analog Ground (for Al)		Analog Input 10[+]	B38
Analog Ground (for AI) B39	-	A39	Analog Ground (for Al)		Analog Input 10[-]	B37
Analog Input 10 B38		A38	Analog Input 02		Analog Input 11[+]	B36
Analog Input 26 B37		A37	Analog Input 18		Analog Input 11[-]	B35
Analog Input 11 B36		A36	Analog Input 03		Analog Ground (for Al)	
Analog Input 27 B35		A35	Analog Input 19		Analog Ground (for Al)	
Analog Ground (for Al) B34		A34	Analog Ground (for Al)	-	Analog Input 12[+]	
Analog Ground (for Al) B33	[49] [1]	A33	Analog Ground (for Al)		Analog Input 12[-]	
Analog Input 12 B32	B48171A48	A32	Analog Input 04	_	Analog Input 12[+]	
Analog Input 28 B31	-	A31	Analog Input 20	-	Analog Input 13[+] Analog Input 13[-]	
Analog Input 13 B30	-	A30	Analog Input 05	-		
Analog Input 29 B29	-	A29	Analog Input 21	-	Analog Ground (for Al)	
Analog Ground (for Al) B28	-	A28	Analog Ground (for Al)	-	Analog Ground (for Al)	
Analog Ground (for Al) B27	-	A27	Analog Ground (for Al)	-	Analog Input 14[+]	
Analog Input 14 B26	-	A26	Analog Input 06		Analog Input 14[-]	
Analog Input 30 B25	-	A25	Analog Input 22	-	Analog Input 15[+]	
Analog Input 15 B24	-	A24	Analog Input 07	-	Analog Input 15[-]	
Analog Input 31 B23	-	A23	Analog Input 23	-	Analog Ground (for AI)	
Analog Ground (for Al) B22 Analog Ground (for Al) B21	-	A22 A21	Analog Ground (for Al) Analog Ground (for Al)		Analog Ground (for Al)	B21
Digital Ground B20	-	A21 A20	Digital Ground		Digital Ground	B20
*1 +5V DC from PC B19	-	-	+5V DC from PC *1	-	*1 +5V DC from PC	B19
*2 Digital Input/Output 08 B18	-	A19 A18	Digital Input/Output 00 *3	-	*2 Digital Input/Output 08	B18
*2 Digital Input/Output 08 B18 *2 Digital Input/Output 09 B17	-	A16	Digital Input/Output 00 *3	-	*2 Digital Input/Output 09	B17
*2 Digital Input/Output 09 B17	B01	A17	Digital Input/Output 01 '3		*2 Digital Input/Output 10	B16
*2 Digital Input/Output 10 B16	[96] [48]	A10	Digital Input/Output 02 *3	-	*2 Digital Input/Output 11	
*2 Digital Input/Output 12 B14	[90] 🗸 [40]	A14	Digital Input/Output 03 3	-	*2 Digital Input/Output 12	
*2 Digital Input/Output 12 B14	-	A14	Digital Input/Output 05 *3	-	*2 Digital Input/Output 13	
*2 Digital Input/Output 14 B12	-	A12	Digital Input/Output 05 '3	-	*2 Digital Input/Output 14	
*2*4 (C			5 1 . 1		*2*4 (Cine alternational Label Orates +)	
^{*2*4} (Simultaneous Hold Output) Digital Input/Output 15 B11		A11	Digital Input/Output 07 *3		Digital Input/Output 15	B11
AO Control Signal Output 00 B10		A10	AI Control Signal Output 00		AO Control Signal Output 00	B10
AO Control Signal Output 01 B09		A09	AI Control Signal Output 01		AO Control Signal Output 01	B09
Digital Ground B08		A08	Digital Ground		Digital Ground	B08
AO External Generating Clock Input B07		A07	AI External Sampling Clock Input		AO External Generating Clock Input	
AO External Stop Trigger Input B06		A06	AI External Stop Trigger Input		AO External Stop Trigger Input	
AO External Start Trigger Input B05		A05	Al External Start Trigger Input	_	AO External Start Trigger Input	
Counter UP Clock Input 01 B04		A04	Counter UP Clock Input 00	_	Counter UP Clock Input 01	
Reserved B03	-	A03	Reserved	_	Reserved	
Counter Gate Control Input 01 B02		A02	Counter Gate Control Input 00		Counter Gate Control Input 01	
Control Output 01 B01		A01	Counter Output 00	_		
					Counter Output 01	BUI

- The numbers in square brackets [] are pin numbers designated by HONDA TSUSHIN KOGYO CO.

*1 This becomes enabled when JP1 is set to 2-3.

*2 Only Digital Output is available when JP1 is set to 2-3.

*3 Only Digital Input is available when JP1 is set to 2-3.

*4 Simultaneous Hold Output becomes enabled when JP1 is set to 2-3. - The numbers in square brackets [] are pin numbers designated by HONDA TSUSHIN KOGYO CO.,

*1 This becomes enabled when JP1 is set to 2-3.

Differential Input

N.C. B48

N.C. B47

[49]

B48

B01_

[96]

*2 Only Digital Output is available when JP1 is set to 2-3.

*3 Only Digital Input is available when JP1 is set to 2-3.

*4 Simultaneous Hold Output becomes enabled when JP1 is set to 2-3.

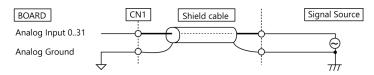
Signal name	Description
Analog Input00 - Analog Input31	Analog input signal with single-ended input. The numbers correspond to channel numbers.
Analog Input 0[+]	Analog input signal with differential input.
- Analog Input 15[+]	The numbers correspond to channel numbers.
Analog Input 0[-]	Analog input signal with differential input.
- Analog Input 15[-]	The numbers correspond to channel numbers.
Analog Output00 - Analog Output01	Analog output signal. The numbers correspond to channel numbers.
Analog Ground	Common analog ground for analog I/O signals.
Al External Start Trigger Input	External trigger input for starting analog input sampling
Al External Stop Trigger Input	External trigger input for stopping analog input sampling.
AI External Sampling Clock Input	External sampling clock input for analog input.
Al Control Signal Output 00	External sampling clock output signal for analog input.
Al Control Signal Output 01	External output signal for analog input status. Not currently connected
AO External Start Trigger Input	External trigger input for Generating analog output.
AO External Stop Trigger Input	External trigger input for Generating analog output.
AO External Generating Clock Input	External Generating dock input for analog output.
AO Control Signal Output 00	External Generating dock output signal for analog output.
AO Control Signal Output 01	External output signal for analog output status. Not currently connected.
Digital Input/Output 00 - Digital Input/Output 15	Digital I/O signal.
Counter Gate Control Input00 - Counter Gate Control Input01	Gate control input signal for counter
Counter Up Clock Input00 - Counter Up Clock Input01	Count-up clock input signal for counter.
Counter Output00 - Counter Output01	Count match output signal for counter
Digital Ground	Common digital ground for digital I/O signals, external trigger inputs, external sampling dock inputs, and counter I/O signals.
+5V DC from PC	Outputs +5V. The total current-carrying capacity that can be supplied is 0.9. Mainly used for supplying power to expansion accessories.
Simultaneous Hold Output	Control signal for simultaneous sampling unit ATSS-16A available as an option.
Reserved	Reserved pin
N.C.	No connection to this pin

© CONTEC

- Do not connect any of the outputs and power outputs to the analog or digital ground. Neither connect outputs to each other. Doing either can result in a fault.
- If analog and digital ground are shorted together, noise on the digital signals may affect the analog signals.
 Accordingly, analog and digital ground should be separated.
- Leave "Reserved" pins unconnected. Connecting these pins may cause a fault in the product.

Connecting Analog Input Signal

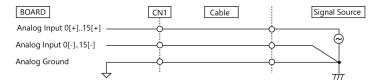
Single-ended Input


Single-ended Input Connection (Flat Cable)

The following figure shows an example of flat cable connection. Each signal source is connected to one analog input channel and the signal common to analog ground pin of CN1.

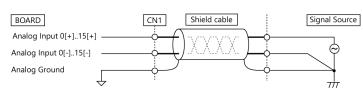
Single-ended Input Connection (Shielded Cable)

The following figure shows an example of shielded cable connection. When the distance between the signal source and the product is long or you want to increase the noise tolerance, a shield cable is suggested. Connect the signal by the core wire and common signal by the shield braids.


▼CAUTION

- When a frequency of 1MHz or higher is contained in the source signal, the cross talk between channels may occur.
- If the product and the signal source receive noise or the distance between the product and the signal source is too long, data may not be input properly.
- An input analog signal should not exceed the maximum input voltage (relate to the product analog ground). If it exceeds the maximum voltage, the product may be damaged.
- Connect all the unused analog input channels to analog ground.
- In the channel switching, the multiplexer does the electrical charge and discharge on the internal capacitor
 according to the signal voltage. Therefore, the voltage from the previous switching state may go into the next
 channel. It might cause the error of the signal source action. If this occurs, insert a high-speed amplifier as a
 buffer between the signal source and the analog input pin to reduce the fluctuation.
- An input pin may fail to obtain input data normally when the signal source connected to the pin has high impedance. If this is the case, change the signal source to one with lower output impedance or insert a highspeed amplifier buffer between the signal source and the analog input pin to reduce the effect.

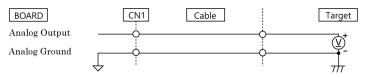
Differential Input


Differential Input Connection (Flat Cable)

The following figure shows an example of flat cable connection. Each signal source is connected to a [+] pin of analog input channel and the signal common of this source to the [-] pin of this input channel of CN1. In addition, the signal common must be connected to the pin of the analog ground of CN1 by a third wire.

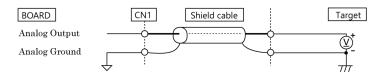
Differential Input Connection (Shielded Cable)

The following figure shows an example of shielded cable connection. When the distance between the signal source and the product is long or you want to increase the noise tolerance, a shield cable connection is preferred. Each signal source is connected to a [+] pin of analog input channel and the signal common of this source to the [-] pin of this input channel of CN1. In addition, the signal common must be connected to the pin of the analog ground of CN1 by the shielded braids.


▼CAUTION

- When a frequency of 1MHz or higher is contained in the source signal, the cross talk between channels may occur.
- The input data would be uncertain if the analog ground is not connected.
- If the product and the signal source receive noise or the distance between the product and the signal source is too long, data may not be input properly.
- The input voltage from the [+] input or [-] input should not exceed the maximum input voltage (based on the
 product analog ground). If it exceeds the maximum voltage, the product may be damaged.
- Because the input data will be uncertain if the [+] pin or the [-] pin of CN1 is not connected, all the unused input pins of CN1 should be connected to the analog ground, AGND.
- In the channel switching, the multiplexer does the electrical charge and discharge on the internal capacitor
 according to the signal voltage. Therefore, the voltage from the previous switching state may go into the next
 channel. It might cause the error of the signal source action. If this occurs, insert a high-speed amplifier as a
 buffer between the signal source and the analog input pin to reduce the fluctuation.
- An input pin may fail to obtain input data normally when the signal source connected to the pin has high
 impedance. If this is the case, change the signal source to one with lower output impedance or insert a highspeed amplifier buffer between the signal source and the analog input pin to reduce the effect.

Analog Output Signal Connection

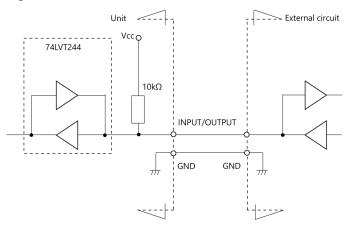

Analog Output Connection (Flat Cable)

The following figure shows an example of flat cable connection. Connect the signal source and ground to the CN1 analog output.

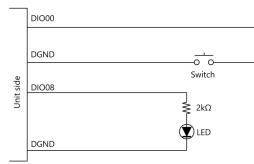
Analog Output Connection (Shielded Cable)

The following figure shows an example of shielded cable connection. Use shielded cable if the distance between the signal source and product is long or if you want to provide better protection from noise. For the CN1 analog output, connect the core wire to the signal line and connect the shielding to ground.

▼CAUTION


- If the product or the connected wire receives noise, or the distance between the product and the target is long, data may not be outputted properly.
- For analog output signal, the current capacity is ±5mA (Max). Check the specification of the connected device before connecting the product.
- Do not short the analog output signal to analog ground, digital ground, and/or power line. Doing so may
 damage the product.
- Do not connect an analog output signal to any other analog output, either on the product or on an external
 device, as this may cause a fault on the product.

Connecting I/O Signals


The following sections show examples of how to connect digital I/O signals.

All the I/O signals are TTL level, and input or output can be set in 8-bit units by software.

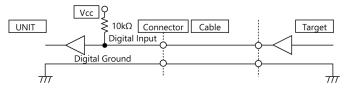
Digital I/O Circuit

Example of Connection

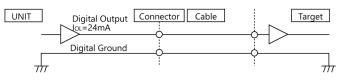
When switch is "ON", the corresponding bit is "0". When switch is "OFF" in contrast, the corresponding bit is "1". When "1" is output to a relevant bit, the corresponding LED comes on. When "0" is output to the bit, in contrast, the LED goes out.

These input/output signals are changed according to the software configuration when JP1 is set to 1-2. When JP1 is set to 2-3, the product will be fixed at 8 inputs and 8 outputs (with 1 output for Simultaneous Hold Output).

▼CAUTION


- Do not short the outputs to analog or digital ground. In addition, do not connect two outputs together. Doing either can result in a fault.
- If JP1 is set to 1-2 when the product power is turned on, only inputs will be used.
 When JP1 is set to 2.3 the product will be fixed at 0 inputs and 8 or the tar (with 1 or the target).
- When JP1 is set to 2-3, the product will be fixed at 8 inputs and 8 outputs (with 1 output for Simultaneous Hold Output).

Counter signals and Control signals Connection

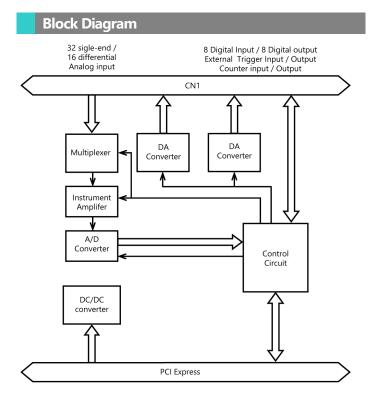

The following sections show examples of how to connect counter I/O signals, and other control I/O signals (external trigger input signals, sampling clock input signals, etc.).

All the counter signals and control signals are LVTTL.

Counter input and Control input Connection

Counter output and Control output Connection

About the counter input control signal


Counter Gate Control Input (refer to the chapter 3 Connector Pin Assignment) acts as an input that validate or invalidate the input of an external clock for the counter. This function enables the control of an external clock input for the counter. The external clock for the counter is effective when input is "High" and invalid when input is "Low". If unconnected, it is a pull-up in this product and remains "High". Therefore the external clock for the counter is effective when the counter gate control input is not connected.

About the count match output signal

When Counter Output00 - 01 matches the compare count value set by the device driver, a one-shot pulse is output. For level and signal logic, see "Hardware Specification".

▼CAUTION

- Do not short the output signals to analog ground, digital ground, and/or power line. Doing so may damage
 the product.
- If connected to each output, a pull-up resistor must be about 10kΩ to pull up with a 5V power source.
 Each input accepts 5V TTL signals.

6

Differences between this product and our earlier models.

AIO-163202G-PE and E-series

ltem	AIO-163202G-PE *1	AIO-161601E3-PE	AD16-16(PCI)EV
Analog input	32ch (Single-Ended Input),	16ch (Single-Ended Input),	16ch (Single-Ended Input),
Number of channels	16ch (Differential Input) *2	8ch (Differential Input)	8ch (Differential Input)
Analog input Input range	Bipolar ±10V, ±5V, ±2.5V or Unipolar 0 - +10V, 0 - +5V, 0 - +2.5V	Bipolar ±10V, ±5V or Unipolar 0 - +10V, 0 - +5V	Bipolar ±10V, ±5V or Unipolar 0 - +10V, 0 - +5V
Analog input Range setting	Software	Jumper	Jumper
Absolute max. input voltage	±15V	±20V	±20V
Analog input Buffer memory	128M Word FIFO or 128M Word RING	32M Word FIFO or 32M Word RING (16M data) *3	32M Word FIFO or 32M Word RING (16M data) *3
Analog input Control signal	LVTTL level 3ch *4	TTL level 3ch	TTL level 3ch
Analog input External status output	LVTTL level 2ch *5	TTL level 1ch	TTL level 1ch
Analog output Number of channels	2ch *6	1ch	1ch
Analog output range	Bipolar	Bipolar ±10V	Bipolar ±10V
	±10V, ±5V, ±2.5V, ±1.25V or Unipolar 0 - +10V, 0 - +5V, 0 - +2.5V	or Unipolar 0 - +10V	or Unipolar 0 - +10V
Analog output Range setting	Software	Jumper	Jumper
Analog output Buffer memory	256k Word FIFO or 256k Word RING		
Analog output Conversion start trigger	Software, conversion data compare, external trigger *6, and event controller output.		
Analog output Conversion stop trigger	Data save complete, conversion data compare, external trigger *6, event controller output, and software.		
Analog output Control signal	LVTTL level 3c *6		
Analog output External status output	LVTTL level 2ch *6		
Digital input	LVTTL level 8ch *4*6	TTL level 4ch	TTL level 4ch
Digital output	LVTTL level 8ch *5*6	TTL level 4ch	TTL level 4ch
Counter channel	2ch *6	1ch	1ch
Counter Device	*7	i8254 equivalent	i8254 equivalent
Counter Clock	Internal signal (10MHz) or External Signal	Internal signal (4MHz) or External Signal	Internal signal (4MHz) or External Signal
Max. count	FFFFFFFFh (Binary data, 32bit)	FFFFFFFFFFFFh (Binary data, 48bit) *8	FFFFFFFFFFFFFh (Binary data, 48bit) *8
Counter External Input Input level	LVTTL level *4	TTL level	TTL level
Counter External Output Output level	LVTTL level *5	TTL level	TTL level
Bus master	Installed		
Synchronization bus	Installed		
Occupied address	Memory address 256MByte×2	I/O address 32 ports	I/O address 32 ports
Connector	96-pin half pitch connector [M(male)type] PCR-96LMD [HONDA TSUSHIN KOGYO CO, LTD.] or equivalent *9	37 pin D-SUB connector [F (female) type] Screw lock #4-40UNC DCLC-J37SAF-20L9E [mfd. by JAE] equivalent to it	37 pin D-SUB connector [F (female) type] Screw lock #4-40UNC DCLC-J37SAF-20L9E [mfd. by JAE] equivalent to it
		16-pin Pin-header PS-16SEN-D4P1-1C [mfd. by JAE] equivalent to it	16-pin Pin-header PS-16SEN-D4P1-1C [mfd. by JAE] equivalent to it
Current consumption	3.3VDC 2500mA 12VDC 500mA *10	3.3VDC 1500mA *11	5VDC 1000mA *11
Bus specification	PCI Express Base Specification Rev.2.0 x1	PCI Express Base Specification Rev. 1.0a x1	PCI (32bit, 33MHz, Universal key shapes supported)
Dimension (mm)	169.33(L) x 110.18(H)	169.33(L) x 110.18(H)	176.41(L) x 105.68(H)
Weight	140g	160g	150g

- *2 When using the DT-G2E-16, either 16 channels (single-ended input) or 8 channels (differential input) will be
- used. *3 1 data bit = 2 words
- *4 Inputting a 5 V TTL signal is possible.
- *5 Output to 5VTTL signal is possible. The signal will be output when H is 2.0 V or higher, and L is less than 0.8 V.
 *6 The number of analog outputs, control signals, digital inputs/outputs, counters, etc. will be limited when using
- a conversion cable (DT-G2E-16 or DT-G2E-32). Refer to the instruction manual of the conversion cable for details.
- *7 A separate counter function is installed.
 *8 It is the case above listed according to the setting of the installed jumper.
- It could be 32bit depending on the settings.
- *9 Conversion to a connector equivalent to the AIO-161601UE3-PE or AD16-16U(PC)EV is possible by using a conversion cable.
- *10 The 12 V consumption becomes zero when no external +5 V supply is used.
- *11 The current consumption increases when +5 V is supplied externally from the connector.

*1 When JP1 is set to 2-3.