

M2M/IoTソリューション CONPROSYS PCB社製速度センサとの接続

2018年8月2日 株式会社コンテック

品名	型式	必要数	メーカー
M2Mコントローラ	CPS-MC341-ADSC1-111 %1	1	CONTEC
速度センサ	642A01	1	PCB Piezotronics
直流電源DC24V	S8VS-06024	1	OMRON
ノートPC	- *2	1	-

※1:本型式以外でも0-20mAの電流入力端子を有するCONPROSYSシリーズで動作します。
 ※2:Google Chrome、Firefox、Internet Explorer11 等が動作するPCをご利用ください。

サンプル概要

本サンプルは 速度センサ 642A01 と 24V電源をM2Mコントローラのアナログ入力端子「AIO」に接続します。 電流の測定結果をM2Mコントローラのモニタリング (Web) 画面で速度(in/sec)※に変換して表示します。

※速度の単位はインチ/秒としています。642A01の取扱説明書に記載の速度単位に合わせています。

センサとM2Mコントローラ接続詳細

M2Mコントローラのアナログ入力端子とセンサの配線状態を示します。

タスクの復元方法

①タスク編集画面より [ファイル] – [ローカルディスクから開く] を選択します。

CONPROSYS WEB Set 🗙 🌾 E	Editor ×			
$\leftarrow \rightarrow$ C \triangle (i) 10.1.1.101/task/task.htm?lang=jp				
■ ファイル 編集 表示 設行	定 ヘルプ			
 タスパ音新規タスク▲ 入力/タスクを開く 入力/タスクを保存 ローカルディスクから開く 文字ロボカルディスクに保存 デバ設定をROMに保存 システム情報 				
 演算 → 演算 → 定数と演算 → 定数設定 → 演算式 				

②ダウンロードしたファイルを展開したフォルダから 「PCB_VelocitySensor_demo.dat」を選択し、[開く]をクリックします。

タスクの説明①

タスクの説明②

目的の工業値変換を達成するために、『Y=aX+b』の式中の、『a』及び『b』を計算します。

目的とする上限『Ymax』、下限『Ymin』及び、アナログ入力上限『Xmax』、アナログ入力 下限『Xmin』を用いて、以下の計算を実施しています。(下記グラフを参照)

$$a = \frac{Y_{max} - Y_{min}}{X_{max} - X_{min}}$$

$$b = Y_{\min} - a \cdot X_{\min}$$

タスクの説明③

「642A01」のマニュアルを参照し、前項の式に値を代入し工業値変換を求める式を作成し VTCに反映します。

$$a = \frac{Y_{max} - Y_{min}}{X_{max} - X_{min}} = \frac{1 - 0}{4 \ 0 \ 9 \ 6 - 8 \ 1 \ 9} = \frac{1}{3 \ 2 \ 7 \ 7}$$

$$b = Y_{min} - a \cdot X_{min} = 0 - \frac{1}{3 \ 2 \ 7 \ 7} \times 8 \ 1 \ 9$$

$$Y = a \cdot X + b = \frac{1}{3 \ 2 \ 7 \ 7} \times X - \frac{1}{3 \ 2 \ 7 \ 7} \times 8 \ 1 \ 9 = (X - 8 \ 1 \ 9) \times \frac{1}{3 \ 2 \ 2 \ 7}$$

モニタリング画面の復元方法

①モニタリング編集の画面より [ファイル]-[ローカルディスクから開く…]を選択します。

CONPROSYS WEB Set × © Editor ×	
$\leftrightarrow \rightarrow \mathbf{C} \ \mathbf{\hat{C}}$ (i) 10.1.1.101/viewer/edit.htm?lang	=jr
ファイル 編集 表示 設定 ヘルプ	
 新規ページ ページを開く… ページを保存 名前をつけて保存… ローカルディスクから開く… 	
- □→カルディスクに保存 - Viewerで実行 トラ - 設定をROMに保存 - ○ Htmlフレーム - ○ 入力 - 圖 ボタン	

②ダウンロードしたファイルを展開したフォルダから 「PCB_VelocitySensor_demo.page」を選択し、[開く]をクリックします。

モニタリング画面の説明

レベルメータを利用して以下の画面を作成しています。

センサを移動させたり、振動を与えるとレベルメータが上下に表示が変化します。

